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Abstract. One of the challenges in current and future synoptic sky surveys is to identify reliable 
candidate transient sources from immense data streams that can lend themselves to follow-up 
and classification. To increase one’s chances of discovering rare and new events will require 
either pushing to fainter flux levels with a “bigger” telescope to maintain a relatively high 
signal-to-noise ratio (an inevitable consequence of technological growth), or, probing to lower 
single-epoch signal-to-noise ratios and combining the data in such a way to maximize the 
reliability and statistical significance of detections. The latter is the topic of this study and is 
applicable to the current era of synoptic surveys where one may wish to extend discovery space 
to guide future exploration. However, this process will not end as new technology comes on-
line. There will always be a desire to probe deeper and optimize discovery methodologies 
against instrumental and physical limitations. We offer some ideas on how to optimize the 
detection of transients from multi-epoch imaging data using various statistical measures in 
image-pixel space. We explore their sensitivity, compare to traditional approaches, and test them 
on data from the Catalina Real-time Transient Survey (CRTS). 
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1. INTRODUCTION 

Time domain astronomy is now transitioning into an immensely data-rich regime 
made possible by advancements in instrumentation and technology. This is enabling 
efficient wide-field surveys and progress in data-management practices to handle peta-
scale archives and databases. Current surveys include the CRTS (Drake et al. 2009), 
PTF (Law et al. 2009), and Pan-STARRS (Kaiser et al. 2002) in the optical, and 
various SKA pathfinder missions in the radio (Dewdney et al. 2009). These are setting 
the course for the next generation of surveys like LSST (Ivezic et al. 2011) and SKA 
that will yield tens of terabytes nightly over a span of at least five years. The 
community is faced with a challenge to process and mine this flood of data as 
efficiently and optimally as possible. 

The first important step is the detection of candidate transients and variables at 
some level of significance (set by the maximum tolerable fraction of false positives) 
that ensures one is reasonably confident the detections are real and worthy of follow-
up. However, there is always a desire to open-up discovery space and attempt to 
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uncover the “unknown unknowns”. To increase our chances of discovering rare and 
new events, either through archival analyses or real time follow-up of interesting 
events would require probing to lower flux levels (or larger spatial volumes). This 
may mean detecting events with a lower signal-to-noise (S/N) ratio in single-epoch 
exposures when the physical capabilities of the instrumentation are reached since there 
is little scientific return when operating at nominal (more conservative) extraction 
thresholds. By mining deeper into the “muck”, we must be prepared for a higher rate 
of false positives, e.g., detector glitches and artifacts, and/or contamination from a 
“fog” of uninteresting astrophysical transients. Consequently, we need to place more 
emphasis on ensuring reliability at the expense of completeness. 

A popular method for detecting transients is difference imaging with prior PSF-
matching against a deeper reference image (e.g., Alard 2000; Bramich 2008). This 
method is powerful, but is limited by the PSF-matching accuracy in a single-epoch 
exposure, often requiring a relatively high detection S/N threshold in the difference 
image to offset the residuals. Furthermore, this method can be very difficult to apply 
for some detectors due to atmospheric refraction effects (e.g., CRTS; Drake et al. 
2009). 

This paper focuses on optimizing transient detection at low to moderately low S/N 
levels across multiple single-exposure observations. We have explored some optimal 
image-combination metrics to achieve this (§2). By “optimal”, we mean in the 
maximum-likelihood sense according to the noise-distribution followed by the input 
measurements. In fact, our method is optimized for optical/IR data where the 
underlying photon-noise is well into the Gaussian limit (setting aside systematic error 
sources). An important question is: how low a S/N can we reach in a series of single-
epoch observations to ensure a moderately high significance in our combined metric-
image space? We address this using Monte-Carlo simulations. Our focus here is 
reliable identification of faint, low S/N transient candidates, not classification, 
although the latter can assist the former to weed out the “known unknowns”. We have 
implemented our method in a prototype software tool “imtrandetect” which we briefly 
describe in §3. We present some preliminary results of testing on image data from the 
CRTS in §4. 

2. METHODOLOGY 

The problem of detecting faint (usually low-significant) events in single epoch 
observations entails devising a statistic that combines information from multiple 
consecutive epochs in time that we can test for significant excursion above the null 
hypothesis (H0) of pure noise fluctuations. The difficulty is finding a statistic which is 
most sensitive to repeated (systematic) behavior in a series of measurements (different 
from that expected by the underlying noise) that may suggest a faint transient. This 
assumes the underlying noise (including any correlated behavior over time) is well 
characterized beforehand. 

Figure 1 shows a schematic of a transient whose peak signal is shown to be 
relatively strong for clarity and the purposes of this discussion. The measurements 
may be that of a single pixel j through a stack of registered, time-ordered images, 
which we represent as z-scores, i.e., the number of sigma above the pixel’s ‘long-run’ 
baseline level, mj. The sigma value here (σj) is characteristic of the pixel over time 
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(see below for estimation methods). Figure 1 also shows marginal distributions by 
collapsing the time axis and binning the z-scores. One can see that if the time series is 
windowed in time, the distribution of measurements for the window containing a 
suspect transient will be more skewed or rather, have a relatively greater fraction of 
values with large excursions from the underlying baseline level above the long-run 
noise (σj) than if the distribution from all measurements (i.e., from all windows) is 
used. 

Windowing a series (with some optimum window-length; see below) therefore 
reduces dilution from the underlying noise. For relatively faint short-lived transients 
(compared to the available history of measurements on a sky location) the baseline 
noise will dominate if many ‘null’ measurements over a long time-span were 
combined, hence rendering reliable detection difficult. Therefore, windowing 
increases our chances of detecting faint transients on local time-scales if one has a 
good handle on the historical noise at a given sky location. This is an improvement 
over traditional single-epoch image differencing (which is a point-wise process in 
time) since by combining multiple consecutive epochs (assuming they are relatively 
closely separated in time; i.e., to provide good sampling of the target transients), will 
increase the detection S/N. This is the crux of our method. We expand on the details 
and limitations below. 
 

 
 
FIGURE 1. Schematic of windowing scheme for a series of noisy pixel measurements (relative to some 
baseline mj and normalized by the long run noise-sigma, σj, over time on a sky location j). A 
hypothetical transient appears above the noise in window w2. On the far right are two marginal 
distributions (collapsed along the time axis) formed by all measurements and only those in window w2. 
 

We have constructed several image-combination metrics for “collapsing” a series of 
time-ordered pixel measurements (z-scores) from a set of sky-registered images. These 
“metric-images” are generated for each window along the time-sequence. At first, we 
experimented with four metrics (per pixel stack in a window): (i) the maximum pixel 
z-score; (ii) the fractional excess of z-score values above some threshold relative to 
that expected from noise alone (e.g., a Gaussian distribution); (iii) the classic reduced 
chi-square; and (iv) the third central moment (which we refer to as the skew from now 
on, with symbol S). These are respectively defined as follows for a pixel stack j in 
window i containing Nwi images: 

 
 zij,max =max zijt ∀ t =1,2,3… Nwi{ }  (1) 
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for a pixel signal pijt falling in window i, at sky location j, and measured at time t that 
exhibits a long-run “static” baseline level mj and noise-sigma σj. The functions of Nwi 
pre-multiplying Eqs (3) and (4) make these metrics unbiased estimators of the 
respective normal population values since each is based on sample estimates of the 
location (baseline level) and noise-variance (e.g., Pearson 1931). A χ2 statistic (similar 
to Eq. 3) was used by Szalay et al. (1999) for generic source detection by combining 
images across multiple passbands. It is used here in a somewhat different context. 
Furthermore, a related metric was explored by Babu et al. (2008) for transient 
detection, referred to as the Mahalonobis distance. This is just the square-root of the χ2 
metric that includes covariance estimates between the measurements: 
DM = √[(Pj – Mj)TΩ-1(Pj – Mj)], where Pj , Mj are the data and mean column vectors 
respectively and Ω is the error-covariance matrix. We ignore correlations since our 
method only combines pixel measurements in the temporal domain where they are 
expected to be largely independent, i.e., Ω is diagonal, while Babu et al. also combine 
measurements in the spatial domain which are not necessarily independent. 

The metric-images formed by metrics (1) – (4) can then be thresholded to identify 
transient candidates through use of a matched filter (e.g., that appear PSF-like), or 
searching for spatially contiguous hi-values above some local spatial-noise threshold. 
As a detail, one may want to place these metrics on an equal footing for thresholding 
purposes, e.g., by converting them to probabilities per pixel (i.e., of getting a value 
larger than that observed by “chance” under a H0 of pure noise). The best approach is 
to use empirical null probability distributions derived from the data at hand. This will 
capture the noise structure and properties inherent in the data itself, including 
systematics, correlated-noise etc. The calibration of null empirical probability 
distributions is cumbersome, although it need only be done once for the 
detector/instrument being used. In this initial study, we opted to threshold the metric-
image values directly relative to the mean and sigma of a sample metric expected 
under a H0 that measurement errors are distributed as Gaussian. Taking metrics (3) 
and (4) for instance, we convert these to equivalent z-scores that can be thresholded: 
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Equation (6) follows from the fact that the mean and variance of the reduced χ2 are 1 
and 2/dof respectively, where the number of degrees of freedom is dof = Nwi – 1. 
Equation (7) uses the fact that the skew (third moment) for a Gaussian population of 
errors is zero, and the expected variance for the sample skew as computed using the 
unbiased estimator in Eq. (4) for Gaussian-distributed errors is given by Eq. (8). This 
took some effort to verify via simulations, but discussions can be found in Cramer 
(1946) and Pearson (1931). Furthermore, we find that predictions for the sample mean 
and variance as used in Eqs (6) and (7) conform very well to empirical (histogram-
derived) estimates in real optical/IR image data in noisy background regions, 
testament that the Gaussian-noise assumption is acceptable (when systematics and 
instrumental glitches are at bay!). 

Experiments on real and simulated data revealed that metrics (1) and (2) did not 
perform as well as the reduced χ2 and skew in Eqs (3) and (4) respectively. The results 
showed that the metric images from Eqs (1) and (2) were very noisy and generated a 
plethora of false positives when thresholded. The two that looked most promising (in 
terms of maximizing detection S/N in metric-image space; see §2.2) were the χ2 and 
skew metrics. For the remainder of this paper, we focus on these last two metrics. 
Even though related, these metrics reinforce each other in that the skew preserves the 
sign of an event (or events), i.e., whether it is a positive or negative excursion relative 
to the baseline level. Negative excursions are obviously unphysical (e.g., instrumental 
glitches) and can be immediately flagged as unreliable. The χ2 however, depends on 
the square of fluctuations and cannot be used on its own to reject negative excursions. 

Earlier we fleetingly mentioned long-run estimates of the underlying baseline-level 
and noise-sigma per pixel-stack at sky position j (i.e., mj and σj respectively in Eq. 5) 
for computing z-scores. By “long-run”, we mean over the available history of pixel 
measurements, or a large number of them to properly capture the average temporal 
behavior of a detector’s pixel when collecting real flux from the sky and possibly a 
static astrophysical source. Before using the pixels in a set of images acquired at 
different times to compute mj and σj, we first stabilize the pixels in each image against 
possible temporal variations in the sky background by subtracting a local estimate of 
the background (at low spatial frequencies) from each respective image (details are 
given in §3). We do not consider possible uncalibrated multiplicative effects over time 
(e.g., changing instrumental throughput, atmospheric transparency, etc.), nor possible 
changes in the noise properties of a detector (including photon noise). Once the single-
epoch images have been stabilized against local offset variations (i.e., effectively a de-
trending operation), the challenge then is to estimate the mj and σj images as robustly 



 6 

as possible from the global image stack (over all windows). The goal is to be robust 
against the possible presence of transients that may bias mj and/or σj for a pixel 
relative to that expected in the steady state, i.e., containing a static or null signal that 
fluctuates according to the properties of the detector and photon collection process. 
One may resort to using a well characterized noise model for σj, but from experience, 
we have found such models difficult to tune over the full dynamic flux range of a 
detector. We have decided to estimate mj and σj directly from the data (with some 
caveats in mind, see below). We adopted a simple median for mj and half the 
difference in 15.85 and 84.13 percentile values in each temporal pixel-stack: 

 
 σ j = 0.5 pj (84.13%)− pj (15.86%)"# $%.  (9) 
 
This is equivalent to the standard deviation of a Gaussian population. We ignore the 
convergence properties of sample estimates based on Eq. (9) with respect to unbiased 
population estimates for now. The important thing is that this is robust and its 
accuracy improves appreciably as more data is used. In our software implementation 
(§3), we have an option to globally regularize estimates from Eq. (9) for pixels j that 
fall on sources whose flux varies significantly on regular (or perhaps irregular) 
timescales. These sources will inevitably inflate estimates of σj. We regularize the σj 
image by computing its mode and robust spatial RMS over all pixels j and then 
winsorize (reset) σj values exceeding some threshold: mode + n*RMS to equal this 
threshold itself. This is still an approximation, but it reduces the incidence of high 
stack sigmas due to the presence of real astrophysical variables and intermittent 
transients, bringing down their σj, increasing their z-scores (Eq. 5), and increasing 
their chance of detection in the metric images. 

2.1 Assumptions, Caveats, and Limitations 

At this stage, some limitations of the above method are worth noting. Many of 
these have been fleshed out during the course of testing on CRTS data (details are 
expanded in the software description in §3). We stress that this method is not a generic 
tool for detecting all flavors of astrophysical transients and variables. Aside from the 
limitations imposed by the data (e.g., separation of observation epochs, Earth’s 
atmosphere, instrumental glitches), there are assumptions in our design that severely 
limit the physical transient phase space. Our methodology is intended to complement 
other more generic search methods (e.g., single-epoch image differencing), with the 
goal of extending discovery space. 

First, the method is ideally suited to detecting faint (possibly intermittent) transients 
close to the background level, and not continuous variables (that may vary regularly or 
sporadically). By faint, we mean below some S/N threshold in the median-combined 
global stack image (mj). Pixel signals above this threshold (e.g., typically 5 to 7) are 
masked and excluded from all the windowed metric images (i.e., via Eqns 3 and 4), 
and do not participate in the transient search. The reason for this is to minimize 
contamination from detector artifacts associated with bright sources (e.g., diffraction 
spikes, noisy PSF wings, charge bleeds, etc.). This masking is defined using the global 
median-combined image since the majority of sources in this image will be static, or 
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more precisely, will have been active for ≥ 50% of the time spanned by the single-
epoch images used to compute the median. Therefore, potentially transient or variable 
sources with a long-run median signal exceeding some user-specified S/N threshold 
(either static or periodically varying with ≥ 50% of its “peak” phases above the 
threshold) will be missed. This includes bona fide transients superimposed on 
extended sources with high apparent surface brightness, e.g., supernovae that explode 
in nearby galaxies. Our design therefore severely sacrifices completeness for 
reliability, since the latter is of utmost importance at faint, low S/N levels when 
searching for rare events. 

Second, a related issue is the use of a median to estimate the long-run baseline-level 
per pixel (mj), which enters in computation of the z-scores (Eq. 5) and eventually the 
windowed metrics for transient detection. An astrophysical transient must persist for 
<50% of the entire historical length of the series of single-epoch images under 
investigation (from which mj is computed) to stand a chance of detection. A signal 
persisting for ≥ 50% over the span of all epochs will be pegged to mj (the median) and 
treated as static, resulting in null z-score values and metrics. Therefore it is advised 
that a sufficiently long historical set of observations be used in order to be sensitive to 
the longest transient timescales of interest, i.e., up to half the historical span. 

Tied to the previous point is selection of an optimal window size for computing the 
metric images. One may get the impression that a specific size will bias against certain 
types of transients, but this is not the case. Note that the window size is defined as the 
number of single-epoch observations in a partition, regardless of their separation in 
time, regular or irregular. The frequency of observations obviously determines what 
types of transients can be detected. The window must be small enough so the metrics 
are sensitive to the shortest-lived transients of interest, given limitations imposed by 
the observing frequency. That is, as discussed above, such that dilution from noisy 
measurements within the window is minimized and the metric S/N is maximized (see 
Figure 1). However, the window size must be big enough to ensure good statistics are 
accumulated for the faintest longer-lived transients so the metric S/N is maximized as 
well. Once a window size is selected, the metrics will then be sensitive to all transient 
timescales exceeding the window size, but < 50% the full history of observations from 
which the baseline median mj and noise-sigma σj in Eq. (5) were computed. As 
discussed above, transients persisting longer than this will not be detected since they'll 
be pegged at the value mj resulting in a z-score of 0. Tuning of the window size may 
be done via simulations (e.g., see sec 2.2). 

In practice, the windowed, time-collapsed metric-images from either Eq. (3) or (4) 
(or z-score equivalents in Eq. 6 and 7) may be generated from a historical set of 
images in an archive, or in real time as new observations become available and some 
minimum number of images is reached within the window to trigger generation of a 
new metric-image. Another possible caveat is that depending on the observing 
cadence, window size, and transient time-scale of a source, this process may incur a 
longer lag-time for alerting that an event has occurred (or is occurring) compared to 
the traditional single-epoch image differencing method. 

We stress that the important elements for this method to work optimally are the 
derivation of unbiased, robust estimates of the baseline level mj and noise-sigma σj to 
capture the long-run steady state behavior of the instrument, including any 
fluctuations in throughput (and detector gain) that controls the level of photon-noise 
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observed. The more data, the better, but a long enough history of observations must 
exist to enable these parameters to be determined in the first place. They can be 
refined as more observations are accumulated. 

2.2 Enhancing the effective detection S/N: how deep can we go? 

We have performed Monte Carlo simulations to explore the sensitivity of the χ2 and 
skew epoch-combination metrics (Eqs 3 and 4 respectively) to the number of times a 
transient is measured at or above some single-epoch S/N level within a window of 
noisy observations. We assumed a window containing 15 hypothesized observation 
epochs, which could be part of a much longer history of observations from which 
long-run estimates of the baseline level mj and noise-sigma σj were derived, as 
discussed above. Any window length would suffice, with the number of hypothesized 
transient events scaled accordingly to illustrate our point. We assume uncorrelated 
Gaussian noise throughout. Figure 2 shows a schematic of two transient signals: one 
reaches ~ 3σ at three epochs (left) and another reaches ~ 2σ at five epochs (left). The 
measurements could be of a single pixel or a source integrated over a region. Either 
scenario in Figure 2 would pose a challenge to the single-epoch image-differencing 
method, i.e., by differencing against a deeper, higher S/N template image and 
examining the detections above some threshold. How high a S/N can we achieve by 
transforming the measurements to a new space formed by combining the epochs 
according to the χ2 or skew metric? Furthermore, what is the minimum number of 
times a transient must persist (or be intermittently elevated) above some single-epoch 
S/N within a window in order to achieve an appreciable S/N for detection in the 
metric-space? 

 

 
 

FIGURE 2. A window containing 15 simulated measurements of a transient where three are at ~ 3σ 
(left) and five are at ~ 2σ (right). 

 
Figure 3 shows the results of our simulations for the χ2 metric (Eq. 3). We 

considered a transient exhibiting 2, 3, 5, 7, 10, and 15 events (shown labeled) with 
single-epoch S/N running from 1 to 10 within a window of 15 measurements each 
affected by Gaussian noise ε ~ N(0,1). When the measurement is not elevated as an 
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“event” with some S/N, it is assigned a pure noise fluctuation at the zero baseline. We 
converted the single-epoch S/N and χ2 values to equivalent probability measures 
assuming Gaussian statistics, i.e., as the probability of obtaining at least the observed 
values by chance. For a given number of events at some single-epoch significance, the 
χ2 value obtained is actually a random variable, attaining a slightly different value for a 
new realization of the noise across the 15 measurements. Therefore, we show the 
mean χ2 (high-tail) probability values (solid blue lines) and the 10 – 90 percentile 
ranges (error bars) obtained over 500,000 simulation trials. The single-epoch 
significance levels are equal to the χ2 significance levels along the red-dashed line. 
Overall, the χ2-combined measurements outperform the single-epoch measurements – 
effectively what one would obtain from the image-differencing method. One can see 
that for N = 3 single-epoch events hovering at S/N ~ 3 out of 15 measurements, the χ2-
combined measurements can attain a significance (probability of occurring by chance) 
of α <~ 10-4. Can we do better? 

Figure 4 shows our simulation results for the skew metric (Eq. 4) using the same 
method and inputs as for the χ2. The only difference is a computational detail in how 
the probabilities are computed. While the distribution of a χ2 random variable is well 
known, the distribution for skew when sampling from a normal population is not. We 
resorted to estimating probabilities from analytical fits to distributions for the sample 
skew derived from bootstrap resampling of a normal population. Figure 4 shows that 
the skew metric is more sensitive than the χ2 metric (Figure 3) at detecting transients 
for the same range of single-epoch S/N levels and number of events that may occur at 
these levels. For example, an intermittent transient exhibiting S/N ~ 2 single-epoch 
events needs to occur on average >~ 5 times out of 15 to give an average skew-metric 
significance of α <~ 10-8. The χ2 metric will require it to occur >~ 10 times out of 15 
to achieve the same level of significance. Pushing the skew-metric further, a S/N ~ 1 
event will need occur >~ 7 times out of 15 to give an average skew-metric significance 
of α <~ 10-4. This is very encouraging. In general, the lower the single-epoch S/N, the 
longer a transient must persist at >~ S/N (or exhibit more events at or above this 
threshold) for it to be detected with a high significance in the epoch-combined metric 
space. Note that there may be other more sensitive metrics. From experimenting on 
several metrics, we found that the skew is the most sensitive at detecting low S/N 
transient events, presumably due to it’s ability to detect slight asymmetries in an 
appropriately windowed, time-collapsed distribution of measurements relative to some 
long-run baseline. 
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FIGURE 3. Simulation illustrating the significance (or effective sensitivity) of the χ2 metric (Eq. 3) 
represented as the probability of obtaining a χ2 value larger than that measured by chance if a sequence 
of 15 images contains a transient exhibiting N events with a single-epoch significance of n (= S/N) ≥ 1, 
2, 3, … 10 running along the horizontal axis. Blue lines are average χ2 probability values and the error 
bars span the 10 – 90 percentile range in probabilities obtained over 500,000 simulation trials for each 
N and n. The red dashed line is the line of equality. 

 

 
 

FIGURE 4. Simulation illustrating the significance (or effective sensitivity) of the skew metric (Eq. 4) 
represented as the probability of obtaining a χ2 value larger than that measured by chance if a sequence 
of 15 images contains a transient exhibiting N events with a single-epoch significance of n (= S/N) ≥ 1, 
2, 3, … 10 running along the horizontal axis. Blue lines are average skew probability values and the 
error bars span the 10 – 90 percentile range in probabilities obtained over 500,000 simulation trials for 
each N and n. The red dashed line is the line of equality. 
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3. PUTTING IT INTO PRACTICE 

We have implemented the methodology outlined in §2 in a prototype software tool 
called imtrandetect. This tool is still in a developmental, alpha-testing phase, although 
it implements all crucial elements of the transient search algorithm with a few extra 
features to assist with reliability. As discussed, we only focus on the χ2 and skew 
metrics, and the tool is being made flexible enough to run stand-alone on image data 
acquired in real-time. Details and software usage will be outlined in a future 
publication. Below we summarize some of the features. The rational for most of the 
steps was described above, with caveats and limitations outlined in §2.1. 

3.1 Features and Processing Flow 

The main processing steps in imtrandetect are shown in Figure 5. The most CPU-
intensive steps are the first two: reprojection and interpolation of the input images onto 
a common sky grid, and the estimation/subtraction of a local background at low-
spatial frequencies to ensure stationary pixel baselines versus time. The first of these 
may not be needed if the images are from fixed predefined survey fields and the 
telescope pointing is reasonably accurate. If the software is to be run on an image 
archive, all steps in Figure 5 are massively parallelizable, with certain steps being 
triggered as intermediate products become available (e.g., when a window’s worth of 
data has been preprocessed). If processing on a incoming data stream in real-time, one 
will still have to pre-process a historical subset of archival data in order to obtain 
initial long-run estimates of the baseline-level and noise-sigma per pixel (last box on 
the top row of Figure 5). This “calibration” need only be done once, and perhaps 
refined later. The incoming image-data can then be processed serially as a new 
window’s worth of data becomes available. 

 
Some features of the imtrandetect tool are as follows. 
• Overall, the tool emphasizes masking of instrumental artifacts through use of 

dynamic image masking of bright “static” sources and their artifacts. 
• There is minimal impact from temporal and spatial PSF variations. Hence there 

are no spurious PSF-related residuals since no image-differencing is involved. 
• There is the ability to combine images acquired simultaneously across different 

filters within a window, in order to further improve S/N. 
• It can handle image data with irregularly-spaced observation times and large 

gaps provided one is aware of the limitations. 
• It can handle images with non-uniform overlap (hence spatially-varying depth) 

across epochs, where it is assumed that images will be to be reprojected and 
registered prior to use. 

• Generates light-curves that are photometrically calibrated if calibration 
information is available, otherwise internal relative photometry is performed. 
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• Generates image-cutouts of transient candidates through an image stack over a 
specifiable time-range, as well as the window-combined metric detection 
images. 

• Under development: optional use of priors (e.g., light-curve templates) to assist 
with reliability, isolating specific transient candidates, or omitting undesired 
types. 

• Under development: optional moving object (asteroid) filtering. 
• Other constraints to maximize reliability: e.g., require n consecutive (or 

intermittent) events above some single epoch S/N spanning some Δt. 
 
 

 
FIGURE 5. Processing flow in imtrandetect version 1.0. Details are expanded in §2 and 3. 

 

4. TESTING ON CRTS DATA 

We are currently testing our methodologies on optical image data acquired from the 
Catalina Real-Time Transient Survey (CRTS; Drake et al. 2009). The primary 
objective of CRTS is to search for Near-Earth Objects (asteroids), although there are 
parallel searches for SNe, CVs, Novae, and a wealth of other astrophysical transients 
and variables, both new and previously identified in other surveys. The search for SNe 
in particular has uncovered some rare types (Drake et al. 2011), a large fraction being 
extremely luminous with a tendency to favor very faint host galaxies. Our 
methodology is well suited to discovering these types since it relies on minimal 
contamination from host galaxy light, or other bright “static” underlying/nearby 
emission to avoid being masked for reliability purposes (see details in §2.1). 
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Our testing is very preliminary, although we have managed to recover several 
previously discovered SNe, e.g., Figures 6 and 7. Guided by the simulations presented 
in §2.2, a moving block window of 15 images was used throughout. We pushed down 
to an effective single-epoch S/N of ~ 3 and uncovered a false-positive rate of ~6%, 
comprising mostly instrumental glitches. This isn’t too bad compared to other 
traditional approaches (e.g., image differencing) down to the same S/N level. We also 
uncovered a plethora of faint asteroids which at the time of writing, may or may not 
have been previously discovered. These are detected by virtue of their motion, 
however slight. The metrics are sensitive to differences in flux at fixed sky positions 
across an image stack. Objects moving at speeds of typically >~ an effective PSF 
width between epochs will inevitably appear “compact” and trigger a detection in the 
metric-image. They show up as “events” on a light-curve since the photometry is 
forced at the fixed sky location. Light-curves and thumbnails for two asteroids 
uncovered with imtrandetect are shown in Figure 8. 
 

 

 
FIGURE 6. left: long-run median-combined image containing a barely visible galaxy, and right: Metric 
images from imtrandetect of a ~ 3ʹ′ × 3ʹ′ field centered on the type IIn supernova SN 2011cw discovered 
by CRTS on May 5, 2011. A running window of 15 images was used. See Figure 7 for light-curve and 
single-epoch thumbnails. 
 
 

 
 

FIGURE 7. Light curve and single-epoch thumbnail images from imtrandetect of SN 2011cw detected 
off the metric images shown in Figure 6. 

 



 14 

 
FIGURE 8. Asteroid candidates. Estimated speeds are ~15 and 9 arcsec/hr for the left and right objects 
respectively. 

5. CONCLUSIONS AND CLOSING THOUGHTS 

We have described a methodology and tool for optimally detecting low S/N 
(possibly intermittent) transient events from an incoming data stream or an image 
archive that may have escaped detection using traditional methods. The goal is not to 
replace existing methods but extend them (perhaps in parallel) to maximize the 
scientific returns of a dataset given the observational and technological limitations. 
We emphasize reliability over completeness since we are interested in detecting rare 
events on the surface of a sea of noise. Only by judiciously combining observations 
where a transient may be active do we stand a chance of going beyond what sequential 
single-epoch searches can offer. 

 Setting aside technological improvements, there may be other more optimal 
methods and metrics (in the maximal S/N sense) than what we presented here. We will 
continue the search. Furthermore, we plan to optimize and extend the imtrandetect 
tool with more functionality, in particular to enable the use of prior information to 
assist with reliability, weeding out “uninteresting” transients, and/or targeting a 
specific class of transient for further study. 

In closing, we mention that optimizing transient searches to low S/N levels will 
severely strain efforts for follow-up. There is a deluge of transient candidates being 
generated in current synoptic surveys, even at moderately high S/N levels of >~ 10. 
For example, the CRTS imposes a threshold of ?X? for detection and only ~10% of 
transients are follow-up spectroscopically. This problem is getting worse and the 
number of potentially good candidates will inflate by orders of magnitude in the next 
generation of synoptic sky surveys. LSST for instance is expected to discover 
> 5 × 104 Type Ia supernovae per year using multiband detection down to S/N ~ 10 
(Bernstein et al. 2009). Therefore, it is unlikely one will expend (let alone be granted) 
valuable follow-up resources on a few low S/N events, unless of course they’re truly 
exotic and genuine, and perhaps predicted theoretically. We advocate that the method 
described here is more apt to archival studies, where one has the luxury of applying 
contextual information, classification templates, models and matched filters to 
optimize transient searches of a given type or even new hypothesized types. Even 
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without rigorous follow-up on a per-case basis, archival research is still a very 
powerful way to proceed. 

ACKNOWLEDGMENTS 

The authors would like to thank the W. M. Keck Institute for Space Studies for 
establishing the initial collaborations that resulted in this work. CRTS is supported by 
NSF grant AST-0909182. FJM acknowledges support provided by NASA through a 
contract issued by the Jet Propulsion Laboratory, California Institute of Technology 
under a contract with NASA. 

REFERENCES 

Alard, C. 2000, A&AS, 144, 363 
Babu, G. J., Mahabal, A., Djorgovski, S. G., and Williams, R., 2008, Statistical Methodology, 5/4, 299 
Bernstein, J. P., et al. 2009, LSST Science Book, ch.11 
Bramich, D. M., 2008, MNRAS, 386L, 77 
Cramer, H., 1946, Mathematical Methods of Statistics. Princeton: Princeton University Press 
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., and Lazio, T. J., 2009, IEEE, 97, 1482 
Drake, A. J., et al. 2009, ApJ, 696, 870 
Drake, A. J., et al. 2011, arXiv:1111.2566 
Ivezic, Z., et al. 2011, arXiv:0805.2366 
Kaiser, N., Aussel, H., Burke, B. E., et al. 2002, Proc. SPIE, 4836, 154 
Law, N. M., et al. 2009, PASP, 121, 1395 
Pearson, E. S., 1931, Biometrika, 22, #3, p.423 (JSTOR 2332104) 
  
 
 


