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Method:

Register and interpolate a sequence of image exposures (epochal images) onto a common pixel grid to construct an image cube.
Consider the flux time series (lightcurve) for a single pixel in this grid from the sequence of  images.time-ordered
Optionally apply a median filter to this pixel time series to suppress noise between consecutive time-points. The window size depends on the 
timescale of variability sought and the observing-cadence of your imaging. The temporal window size can be fixed given knowledge of the specific 
survey cadence and science case. The goal (see below) is to make this window choice "science agnostic".
Compute the pairwise first-differenced time series for this pixel (D  = f  - f  for all t = 0, 1, 2,...).t t+1 t
Find the  run (count) of  pairwise slopes that are either positive OR negative (D  > or D  < 0 respectively).longest consecutive t t
Generate an image of these longest runs from "collapsing" all pixel-based time series: a positive count implies a time period where the pixel flux is 
growing in flux; a negative count implies a time period where the flux is decaying.
Apply a 2D spatial sum-filter to the absolute values of the longest runs image to accentuate spatially-correlated neighboring pixels with either large
negative or large positive run lengths; these would be candidates for variable or transient sources, i.e., which may have exhibited a systematic 
trend in flux anywhere in the time-ordered image stack.
Using the background distribution in pixel values in the  (which includes pixels falling on 2D spatial sum-filtered image from the previous step
sources with significantly non-zero flux and where the majority are likely to be non-variable relative to the original detector noise), compute a 
threshold above which a pixel or cluster thereof is likely to indicate variability or transient behavior. In other words, this threshold is derived 
empirically from the same data by histogramming the pixels and picking a quantile from a  of interest (e.g., < 0.1% or < 1% chance Pvalue
occurrence). See below for examples. Computing thresholds empirically will implicitly include any systematics tied to your specific field of interest 
following all processing to mitigate them. I.e., the  used to define your detection process must include all possible sources of error. null distribution
This means the associated  are strictly for your specific field and must not be interpreted in an absolute sense for applicability to the entire Pvalues
survey.
Using the threshold derived in the previous step, execute a peak detector on the 2D spatial sum-filtered run length image. One may impose 
additional constraints to make use of spatial correlations in  and hence maximize reliability, e.g., by requiring at least  pixels to be run length N
above the threshold within a local 3x3 pixel region. This avoids single pixel outliers that are unlikely to be associated with real source signal 
unless the input image pixels grossly under-sample the PSF of the optical system with which the data were acquired.

Expectation from pure Gaussian noise:

Here I pose the question: given a pure-noise time series of length N, what is the probability of obtaining a consecutive run length (in either 
positive or negative pairwise slopes) >= some value NC? In other words, how likely is it to obtain a run length >= NC by chance due to noise 
alone?
These predictions will guide us in determining the significance of a specific run-length in a flux time series under the null hypothesis of pure 
Gaussian noise.
It's important to note that fluctuations in a real flux time-series' on a presumed-"static" source background are not guaranteed to be Gaussian. 
Systematics will be present: e.g., drifts in pointing and hence flux-interpolation accuracy when interpolating all image epochs onto a common grid; 
flux calibration (photometric throughput) biases across epochs; complex varying backgrounds and inaccurate subtraction thereof; PSF variations 
(spatial and temporal); source blending bias; intra-pixel responsivity (relative source pixel-position or phase), etc. Hence, the real "null hypothesis" 
must include all these systematics, which presumably, will be present in all other sources that you are comparing against in your field. Therefore 

measurementsin practice,   of your local background population of "static" sources will define your true null hypothesis.
I performed a Monte-Carlo simulation to explore the pure Gaussian noise null hypothesis. This consisted of simulating 5000 time series trials for 
each length N and counting the number consecutive longest run lengths above each NC value. 
Results are shown in the . In summary, it's unlikely (Pr < 5%) to get a run of >= 6 consecutive same-sign slopes in a pure-noise time  attached plot
series of length N <= 100. For N <= 400, it's even more unlikely (Pr <~ 1%) to get a run of >= 7 consecutive slopes with the same sign.
As mentioned, this exercise is purely academic. The author of this document does not recommend using this  prediction to assess the Gaussian
significance of a  in real data unless it can be shown that measurement errors are by a . By run length dominated  random Gaussian process
"random", we mean where the errors associated with the individual image epochs, following interpolation are . An example is when independent
one is dominated by Poisson noise from the original photon collection process that's also well into the high-count (Gaussian) limit. Systematics 
from any post-processing (e.g., astrometric calibration, registration, photometric throughput matching across epochs) are assumed negligible. 

https://confluence.ipac.caltech.edu/download/attachments/567148597/prob.pdf?version=1&modificationDate=1565647792122&api=v2


Putting it into practice:

The above method was implemented in a Python script (contact F. Masci for code), then executed on two cases from the WISE survey.

CASE 1:

The first case was on a stack consisting of 608 epochal images in the W1 band on the "fireworks galaxy", NGC6946. This galaxy had a Type IIP 
supernova (peaking around early June 2017). Shown below are the epochal image with the supernova at its peak (circled green); the longest same-slope-
sign run-length image; the 2D spatially sum-filtered image; lightcurve. The supernova is clearly discerned above the background.



Associated with the NGC6946 test field above are four additional files:

A  of  pixel values in the stack versus pixel value in the 2D histogram median-collapsed spatial sum-filtered  image. The vertical magenta run length
quantile on the X-axis values alone (same as the magenta line in plot 2. below):line corresponds to the 0.5% upper 

https://confluence.ipac.caltech.edu/download/attachments/567148597/NGC6946_w1_cube_runlengthsumfilt_medvsrunlen.png?version=1&modificationDate=1617125885592&api=v2


A  of pixel values in the 1D histogram spatial sum-filtered  image with a few quantiles (possible thresholds to use) corresponding to run length Pvalu
 = 0.5, 1, 3, 5%:es

https://confluence.ipac.caltech.edu/download/attachments/567148597/NGC6946_w1_cube_runlengthsumfilt_hist.png?version=1&modificationDate=1617125870233&api=v2


A  for peaks (local maxima on clustered pixels) detected above the threshold with  = 208, text file listing diagnostic information q_value 
corresponding to   <=  0.5%. This includes a criterion where 6 or more pixels within a 3x3 region centered on each peak are also above Pvalues
the threshold. The rows in this file are in order of decreasing peak-pixel significance. A measure of the corresponding  deviation from the N*sigma
mode of the histogram is also given, where  is a robust estimate using the high-tail of the 1D histogram in 2.sigma
A  (based J2000 RA, Dec coordinates) corresponding to the above text file to assist users when overlaying detections on any DS9 region file
archived image data.

The following image shows the locations (green crosses) of the significant peaks (local pixel maxima) from the  overlaid on the output text file spatial sum-
filtered  image.run length

CASE 2:

The second case was on a stack consisting of 174 epochal images in the W1 band on the RR Lyra variable, AV Men. This variable has a period 
of ~ 0.55 days. Shown below are the median of all epochal images with the variable circled green; the longest same-slope-sign run-length image; 
the 2D spatially sum-filtered image; lightcurve. Although not as significant as the supernova above, this variable still shows up as the strongest 
spatially-correlated peak in the images.

https://confluence.ipac.caltech.edu/download/attachments/567148597/NGC6946_w1_cube_runlengthsumfilt_highsignif.txt?version=3&modificationDate=1619562711792&api=v2
https://confluence.ipac.caltech.edu/download/attachments/567148597/NGC6946_w1_cube_runlengthsumfilt_highsignif.reg?version=3&modificationDate=1619562733318&api=v2
https://confluence.ipac.caltech.edu/download/attachments/567148597/NGC6946_w1_cube_runlengthsumfilt_highsignif.txt?version=3&modificationDate=1619562711792&api=v2


Further exploration and considerations:

How science-agnostic is this method? What are the limitations on the types of variability (fast vs slow) this method is sensitive to for a given 
survey cadence?
Can we optimize and parameterize the method according to the flavor of variability sought (e.g., reoccurring/periodic variables, fast/slow 
transients)?
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