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Executive Summary 
We	have	adapted	the	new	software	package	“Moving	Object	Discovery	Engine”	
(MODE)	to	run	on	simulated	Large	Synoptic	Survey	Telescope	(LSST)	asteroid	
detections.	The	LSST	simulated	data	are	based	on	a	typical	LSST	cadence,	and	
include	photometric	and	astrometric	noise,	spurious	detections,	as	well	as	weather	
effects.	The	adaptation	of	MODE	included	algorithmic	speed-ups,	and	a	processing	
architecture	that	thins	the	input	data	iteratively	to	improve	completeness.	We	find	
that	in	general	MODE	is	able	to	recover	asteroids,	both	Main	Belt	and	Near-Earth	
Objects,	from	the	LSST	data	with	good	completeness	and	high	reliability	(>95%).			
An	important	caveat	is	that	because	the	realized	LSST	cadence	and	coverage	are	a	
strong	function	of	position	on	the	sky,	MODE	performance	varies	when	used	with	
fixed	parameters.	When	its	parameters	are	tuned	to	the	local	coverage,	MODE	
achieves	over	90%	completeness	(efficiency)	and	over	95%	reliability	(purity).	We	
identify	future	MODE	enhancements	that	will	improve	these	results.	
	
We	did	not	find	clear	evidence	that	the	baseline	LSST	cadence	is	the	limiting	factor	
globally	in	finding	near-Earth	objects.	However,	the	realized	cadence	can	make	the	
recovery	significantly	more	challenging	in	some	patches	of	the	sky	compared	to	
others,	depending	on	the	amount	of	clumping	in	time	of	the	visits.	A	systematic	
exploration	is	needed	of	this	and	other	LSST	survey	simulations	in	order	to	assess	
whether	the	basic	LSST	cadence	may	lead	to	patches	where	finding	Near-Earth	
Objects	is	inefficient,	and	how	to	mitigate	that	possible	deficiency.	Such	an	
exploration	will	help	evolve	a	MODE	processing	architecture	with	the	flexibility	to	
deal	with	the	significant	variations	in	realized	local	coverage.	

1. Introduction 
The	overview	document	by	Chesley	describes	a	study	to	provide	an	independent	
estimate	of	the	performance	of	the	LSST	for	discovery	of	Near-Earth	Objects	(NEO).	
The	IPAC	group	participated	in	the	study,	but	with	limited	interaction	with	the	JPL	
group	and	the	LSST	group	at	University	of	Washington	(UW)	in	view	of	the	novel	
algorithmic	approach	used	by	IPAC.	The	IPAC	activity	aims	at	(1)	the	basic	question	
of	the	suitability	of	the	LSST	survey	scheme	for	finding	NEOs	within	a	time	frame	of	
days	to	weeks,	and	(2)	the	question	of	suitability	of	a	new	software	system	called	
“Moving	Object	Discovery	Engine”	(MODE)	for	processing	LSST	data	for	NEOs.		
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As	described	by	Chesley,	linking	the	stream	of	potential	moving	object	detections	
generated	by	LSST	is	one	of	the	more	stressing	elements	computationally	for	finding	
asteroids,	in	view	of	the	density	of	LSST	moving	object	detections	on	the	sky.	The	
JPL	and	UW	groups	used	different	incarnations	of	the	pre-existing	Moving	Object	
Processing	System	(MOPS)	to	link	detections	extracted	from	the	same	simulated	
LSST	data.	The	IPAC	group	used	the	MODE	system	described	below;	the	rationale	for	
this	choice	is	given	at	the	end	of	Section	1.1.		It	is	worth	noting	that	the	IPAC	effort	
did	not	address	the	question	of	LSST	efficiency	for	characterizing	the	overall	NEO	
population	over	the	lifetime	of	the	survey;	this	is	addressed	in	the	Chesley	&	Veres	
report	(JPL	Publication	16-11).		
	
This	section	(1)	provides	technical	details	on	MODE	and	on	its	adaptation	to	the	
LSST	simulation,	and	highlights	some	of	the	key	differences	between	MODE	and	
MOPS.	Section	2	describes	the	simulated	LSST	data	sets	used	in	this	study,	and	the	
subsets	used	for	rapid	exploration.		Section	3	describes	the	performance	of	MODE	
under	various	conditions.	Section	4	discusses	the	LSST	cadence	and	its	suitability	for	
NEO	finding,	and	section	5	offers	summary	and	conclusions.	

1.1. Moving Object Discovery Engine (MODE) 
MODE	was	developed	at	IPAC	for	data	from	the	Palomar	Transient	Factory	(PTF,	
Law	et	al	2009,	PASP,	121,	1395)	and	is	planned	for	use	on	its	successor,	the	Zwicky	
Transient	Facility	(ZTF,	Bellm	2016;	see	Sec	6).	It	was	developed	for	use	on	
extractions	from	difference	images,	with	provisions	for	scaling	up	to	meet	LSST’s	
computational	demands	by	optimally	leveraging	readily	available	hardware	
architectures.	It	uses	a	new	algorithm,	related	to	ideas	presented	in	Waszczak	et	al	
(2013,	MNRAS,	433,	3115),	and	conceived	after	a	detailed	study	of	the	classic	MOPS	
package.	
	
MODE	has	been	running	in	the	nightly	production	pipeline	on	PTF	data,	with	on-
going	refinements	guided	by	its	on-sky	performance	from	PTF,	and	a	goal	to	support	
ZTF,	which	enters	nominal	survey	operations	in	January	2018.	From	studies	of	the	
recovery	fraction	of	known	objects	(with	well	known	orbits),	MODE	can	detect	
moving	objects	at	a	completeness	(efficiency)	of	>	90%,	and	a	reliability	(accuracy)	
of	>	98%	to	moderately	faint	flux	levels	(R	~	20	for	PTF).	
	
The	most	significant	difference	between	MODE	and	MOPS	is	the	first	step	in	linking	
candidate	moving	object	detections	into	building	blocks	of	candidate	tracks.	MODE	
requires	a	minimum	of	three	detections	to	form	a	moving-object	stringlet,	whereas	
MOPS	starts	out	by	forming	two-detection	“tuples”.	MODE	forms	stringlets	by	
matching	the	relative	velocities	of	two	adjacent	pairs	of	detections	that	share	a	
common	middle	detection.	Their	velocities	are	matched	within	some	tolerance	that	
depends	on	the	time	separation	of	the	detections.	After	all	possible	stringlets	in	the	
detection	stream	have	been	identified,	they	are	linked	using	velocity	matching	on	a	
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coarser	grid	to	create	moving-object	candidate	tracks.	Two	types	of	velocities	are	
used	in	the	final	stringlet-merging	step:	(i)	the	mean	velocity	of	the	(intra-stringlet)	
detection-pairs;	and	(ii)	the	relative	(inter-stringlet)	velocities	between	the	average	
position	of	detections	in	each	of	the	stringlets.	A	schematic	is	shown	in	Figure	1.	The	
candidate	tracks	from	MODE	are	then	vetted	using	a	number	of	quality	metrics,	
including	an	orbit	fit	to	test	if	the	candidate	track	is	dynamically	plausible.	
	
By	building	three-detection	stringlets,	MODE	moves	part	of	the	combinatorial	
challenge	earlier	in	the	processing.		It	helps	eliminate	spurious	two-detection	
“tuples”	that	would	otherwise	add	to	the	load	at	later	stages	of	candidate	track	
construction.	Moreover,	it	significantly	reduces	the	number	of	possible	
combinations	that	need	to	be	processed	and	merged	downstream,	as	opposed	to	
MOPS	which	carries	along	all	possible	two-detection	“tuples”.	The	MODE	design	is	
therefore	more	efficient	in	regions	of	high	source	density	for	a	given	input	timespan.	

1.2 Processing Approach 
In	what	follows,	we	will	refer	to	the	version	of	MODE	specialized	for	the	LSST	case	
as	LMODE.	As	with	MOPS,	a	major	challenge	to	LMODE	is	the	spatial	density	of	
detections	considered	to	be	candidate	moving	object	detections.	In	early	test	runs,	
we	found	the	completeness	to	drop	off	from	near	90%	to	around	30%	as	the	density	
of	detections	went	up	from	the	PTF-like	level	to	the	LSST	simulated	levels.	
	
To	reduce	the	incidence	of	false	linkages	due	to	high	source	confusion	when	
generating	candidate	tracks,	we	iteratively	thin-out	the	detection	candidate	pool	by	
removing	detections	associated	with	reliable	candidate	tracks	identified	at	each	
iteration.	Each	iteration	progressively	allows	for	less	stringent	matching	tolerances	
on	velocity	to	capture	cases	with	less	linear	motion.	The	matching	tolerances	are	
progressively	increased,	starting	with	a	search	for	the	most-linear	and	slowest-
moving	objects	(i.e.,	within	the	tightest	tolerances)	because	these	are	less	subject	to	
contamination	from	confusion	during	the	linking	process	and	can	be	reliably	
identified.	Removing	their	associated	detections	from	the	input	pool	reduces	the	
number	of	potential	contaminants	for	the	next	(less	stringent)	iteration.	The	
thinning-out	is	designed	to	first	remove	the	more	dominant	Main-Belt	Asteroids	
(MBAs)	from	the	pool,	in	order	to	reveal	more	of	the	NEO	population	at	later	
iterations.	A	reliable	candidate	track	consists	of	five	or	more	linked	detections	
fitting	accurately	a	dynamically	valid	orbit.	The	identification	of	reliable	candidate	
tracks	is	based	on	the	Find_Orb	orbit-fitting	software,	which	has	been	adapted	and	
tuned	to	process	candidate	tracks	from	LMODE.	We	found	that	requiring	five	or	
more	linked	detections	per	candidate	track	(as	opposed	to	six)	consistently	yielded	
a	higher	fraction	of	reliable	candidate	tracks	and	recovered	more	of	the	input	
simulated	objects	(i.e.,	a	higher	completeness).	
	
This	iterative	thinning	of	the	detection	pool	is	another	significant	difference	with	the	
default	usage	of	MOPS.	A	schematic	of	the	process	is	shown	in	Figure	2.	Due	to	the	
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limited	computational	resources	available	to	this	study,	it	was	necessary	to	subset	
the	initial	simulated	master	detection	list	(that	covers	~	3π	steradians	and	one	
lunation	or	~	28	days)	both	spatially	and	temporally.	This	partitioning	of	the	
detection	list	also	allows	for	a	parallel	processing	architecture.	For	this	study,	we	
were	limited	to	four	computing	nodes	only.	To	enable	repeated	testing	and	tuning	of	
the	full	parameter	space	with	a	reasonable	turnaround	time	for	the	runs,	we	focused	
on	three	spatial	regions	with	a	limited	time	span	as	detailed	in	section	2	below.		
	
As	shown	in	Figure	2,	the	goal	is	to	first	eliminate	from	the	detection	pool	as	many	
as	possible	of	the	most	abundant	“contaminating”	moving	objects,	the	MBAs.		The	
velocity-matching	tolerances	are	gradually	increased	for	the	first	N_mba	(~	30)	
iterations,	where	we	target	the	velocity	range	characteristic	of	MBAs	(0.05	<~	v	<~	
0.4	deg/day).	The	Find_Orb	thresholds	that	are	used	to	select	good	quality	orbits	
(and	hence	reliable	candidate	tracks)	are	held	fixed	during	this	MBA-thinning	phase.	
When	the	number	of	reliable	MBA-like	candidate	tracks	drops	significantly	to	
several	or	a	few	(typically	after	~	30	iterations),	the	iterations	are	rerun	with	
relaxed	search	tolerances	for	LMODE	and	Find_Orb	to	attempt	to	recover	NEOs	
(against	a	thinned-out	MBA	sky).	The	velocity	range	searched	for	now	is	up	to	~	2	
deg/day.	Additional	MBAs	with	non-linear	and/or	faster	motions	are	also	recovered	
during	this	phase.	The	penalty	of	running	with	relaxed	tolerances	(particularly	for	
Find_Orb)	is	a	slightly	higher	incidence	of	unreliable	candidate	tracks,	but	this	is	
traded	off	against	potentially	more	NEOs	--	the	objects	sought	in	this	study.	Not	
shown	in	Figure	2	is	special	processing	that	occurs	for	the	final	two	(NEO-based)	
iterations.	Here,	the	Find_Orb	thresholds	to	find	good	quality	orbits	are	relaxed	even	
further	in	an	attempt	to	catch	those	NEOs	with	the	most	non-linear	trajectories	
(again,	at	the	expense	of	admitting	more	unreliable	candidate	tracks).	

1.3 Updates and Tuning of LMODE 
Considerable	updates	were	made	to	the	LMODE	track-finding	software.	These	
updates	improved	runtime	and	memory	use,	but	also	allowed	for	a	more	generic	
search	of	candidate	stringlets	(MODE's	building	blocks)	and	their	linkages	to	
construct	candidate	tracks	(see	Section	1.1).	More	debug	diagnostics	and	graphical	
outputs	were	added	to	facilitate	the	visual	tracking	of	individual	objects	through	the	
linking	process.	This	information	was	crucial	in	tuning	the	iterative	process	
described	in	Section	1.2,	particularly	LMODE's	interplay	with	the	Find_Orb	orbit-
fitting	software.	The	author	of	Find_Orb	(Bill	Gray)	also	provided	valuable	advice	
and	streamlined	the	software	for	this	study.	
	
More	importantly,	the	LMODE	input	parameter	set	was	tuned	to	match	the	LSST	
cadence	used	to	simulate	the	input	master	detection	list.	The	primary	parameters	
here	were	constraints	on	the	time-separation	of	the	detections	(observation	epochs)	
used	to	construct	the	stringlets	(Section	1.1).	Two	constraints	were	imposed	when	
finding	the	candidate	moving-object	stringlets:	(i)	one	of	the	detection-pairs	in	the	
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stringlet	must	span	≤10	hours	(i.e.,	the	same	night);	(ii)	the	other	pair	must	span	≤	
3.5	days	(however,	see	sec	3.2	below).	

2. Data Sets and Assumptions	
Input	data	were	provided	by	the	LSST	team	in	file	sample_noDD_noSingletons1.csv.	
This	file	was	derived	from	the	LSST	survey	simulation	named	Enigma1189,	and	
contains	only	detections	of	asteroids.		The	details	of	the	simulation	are	discussed	in	
Chesley	&	Veres	(JPL	Publication	16-11).	
	
Each	detection	had	an	associated	detection	identifier	(“det_id”),	modified	Julian	Date	
(“epoch_mjd”),	position	in	right	ascension	and	declination	in	degrees	(“ra_deg”	and	
“dec_deg”	respectively),	magnitude	(“mag”),	simulated	observation	filter	
(“filter_id”),	field	identification	(“field_id”),	the	index	of	nights	(“nn”),	object	
provisional	name	(“object_name”),	which	began	with	“S1”	for	MBAs	and	“S0”	for	
NEOs,	the	length	of	the	semi-major	axis	of	the	detected	source	profile	(“length_deg”),	
and	the	detected	source	profile’s	position	angle	East	from	North	in	degrees	
(“orient_deg”).	The	file	contained	13,123,961	detections.	

2.1 Data Sampling and Test Regions 
The	data	set	was	sampled	for	initial	exploration	and	verification	of	LMODE	
capabilities,	forming	subsets	of	detections	to	use	as	input.	Sampling	was	carefully	
designed	to	avoid	introduction	of	bias	into	results.	Two	types	of	sampling	were	
explored.	
	
In	early	exploration,	the	whole	input	file	was	“thinned	out”	to	achieve	reductions	in	
detection	counts	by	randomly	selecting	objects	to	keep.	The	goal	was	to	run	LMODE	
on	files	of	manageable	size	given	the	computing	hardware	available.	This	led	to	
samples	with	full	sky	coverage	preserving	the	simulated	properties	but	with	a	lower	
density	of	detections	on	the	sky.	Several	such	thinned	all-sky	samples	were	
produced,	with	total	detection	counts	ranging	from	about	50,000	to	500,000.		We	do	
not	show	results	here	from	these	early	experiments,	because	they	were	primarily	
useful	for	improving	LMODE.	
	
The	later	runs	relied	on	spatial	sampling,	which	keeps	all	detections	that	form	
chains	of	6	or	more	within	circular	sky	regions	spanning	a	predetermined	range	of	
roughly	two	weeks	of	data.	Within	those	two	weeks,	data	were	available	from	
twelve	or	fewer	nights,	since	the	simulation	includes	weather	effects.	This	
subsetting	accommodates	the	simulated	LSST	cadence	of	three	pairs	of	same-night	
visits	occurring	over	a	period	as	long	as	two	weeks.	Three	different	centers	were	
selected,	and	each	center	was	combined	with	three	different	radii	for	the	selection,	
resulting	in	samples	of	25	thousand,	50	thousand	and	100	thousand	detections	
respectively	associated	with	each	center.		We	will	use	the	lables	25K,	50K,	100K	for	
these	samples.		This	approach	preserves	the	density	of	detections	to	a	large	extent,	
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and	tests	LMODE	against	varying	input	file	sizes.	Region	1	is	centered	at	ct1	with	
RA=325deg,	Dec=-32deg	[elon,	elat	=	317,	-17deg],	Region	2	is	centered	at	ct2	with	
RA=210deg,	Dec=	-5deg	[elon,	elat	=	210,	+7deg],	and	Region	3	is	centered	at	ct3	
with	RA=200deg,	Dec=-30deg	[elon,	elat	=	211,	-20deg].	These	regions	were	
identified	as	representative	of	various	object	densities	and	asteroid	sky	motions.	
Region	1	was	selected	for	its	very	high	density,	roughly	ten	times	higher	than	the	
density	in	Region	3.	The	density	of	detections	reflects	the	density	of	observable	
asteroids,	but	is	affected	by	cadence	and	survey	scheme,	sensitivity	of	observations	
and	other	factors	entering	the	simulation.	The	solar	elongation	of	Regions	1,	2,	and	3	
is	110,	140,	and	137	degrees,	respectively,	with	Region	1	in	the	same	hemisphere	as	
Earth	motion	vector	and	Regions	2	and	3	in	the	hemisphere	opposite	to	Earth	
motion	vector.		
	
Table	1	summarizes	the	samples,	their	centers,	the	number	of	detections	and	objects	
in	each,	and	the	radius	of	each	region/sample	combinations.		Plots	illustrating	one	of	
the	sampled	fields	are	shown	in	Figures	3	and	4.	
	

Table	1:	Details	of	thinning	based	on	region	

Sample Name: 
Center-Count 

Region 
center 

Number of 
detections 

Number of 
objects 

Number of 
NEOs 

Number of 
MBAs 

Radius 
(degree) 

C1-25K ct1 24,713 2433 7 2426 3.11 
C2-25K ct2 24,943 3277 4 3273 5.89 
C3-25K ct3 25,182 3546 12 3534 10.44 
C1-50K ct1 48,905 4879 23 4856 4.33 
C2-50K ct2 49,447 6474 8 6466 8.77 
C3-50K ct3 50,040 7180 32  7148 14.39 
C1-100K ct1 98,910 9485 39 9446 6.17 
C2-100K ct2 99,579 12801 18 12783 10.67 
C3-100K ct3 100,099 14503 56 14447 17.67 
 
	
Figure	5	shows	histograms	of	the	numbers	of	detections	occurring	in	each	night	for	
each	of	the	first	three	samples	and	the	last	three	samples	in	Table	1.		Note	the	very	
different	distributions	of	the	detections	over	nights	among	the	three	regions,	and	
note	that	these	differences	persist	even	as	the	solid	angle	of	the	region	increases	by	
a	factor	of	3	to	4.	

2.2 Assumptions  
A	significant	simplifying	assumption	for	this	study	was	that	false	positive	control	
would	be	achieved	at	a	high	level	of	confidence	by	filtering	input	detections	before	
this	step	of	moving	object	finding.		Experience	with	PTF	data	is	strongly	
encouraging,	where	machine-learned	filters	are	able	to	suppress	false	positives	
significantly	(Masci	et	al	2017,	PASP	129,	014002).		For	the	test	runs,	a	minimum	of	
10%	false-positive	detections	were	added	to	simulate	unfiltered	noise	detections.	
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Runs	with	additional	false	positives	were	also	completed	to	test	for	robustness	in	
case	the	10%	assumption	proves	too	optimistic.	The	25k	cases	in	all	three	regions	
were	repeated	with	50%	and	100%	false	positives	injected,	and	the	results	are	
reported	below.	

2.3 Definition of Reliability and Completeness  
Reliability	is	defined	as	the	fraction	of	candidate	tracks	produced	by	the	software	
(LMODE)	that	successfully	recover	a	moving	object	in	the	simulation.		A	track	is	
considered	successful	in	recovering	an	object	if	it	contains	5	or	more	detections	of	
that	object.		For	reliability,	uniqueness	of	an	object	in	the	output	set	is	ignored.		
Reliability	is	a	term	describing	the	success	or	failure	of	each	track,	and	applies	to	the	
output	set	of	analysis	without	consideration	of	type	of	object,	i.e.	MBA	or	NEO.	
	
Completeness	is	defined	as	the	fraction	successfully	recovered	by	the	software	
(LMODE)	of	objects	meeting	the	minimum	requirements	for	detection	in	our	input	
set.		The	minimum	requirements	for	detection	are	five	or	more	detections	of	the	
object	present	in	the	input.		Success	in	recovering	an	object	has	the	same	criteria	for	
calculating	completeness	as	it	does	for	reliability.		Completeness	measures	the	
performance	of	object	detection	as	it	relates	to	the	known	input	set.		As	such,	it	can	
be	used	to	measure	performance	on	any	sub-population	of	that	input	set,	and	can	be	
reported	separately	for	NEOs	and	MBAs,	or	other	subsets	of	the	population.	

3. MODE Performance  

3.1 Completeness and Reliability for Nominal Runs 
The	results	for	the	nominal	runs	are	presented	in	the	three	panels	of	Figure	6.		Each	
panel	refers	to	a	given	sample	size	(25K,	50K	or	100K)	and	shows	the	resuts	for	
each	of	the	three	regions	described	in	Table	1.		The	cumulative	completeness	for	all	
objects	brighter	than	a	given	magnitude	is	plotted	as	a	function	of	magnitude.	The	
reliability	is	given	as	a	single	number	for	each	Region	and	sample	size	in	the	legend.		
It	is	immediately	evident	that	reliability	runs	at	or	above	95%	in	most	cases.		While	
Region	1	shows	the	highest	reliability,	there	are	no	strong	trends	as	a	function	of	
Region	or	sample	size.	
	
Completeness	shows	more	variability,	with	strong	dependence	on	magnitude,	and	
also	on	Region.		For	Regions	1	and	3,	completeness	runs	mostly	above	90%,	dipping	
below	that	line	only	at	magnitudes	fainter	than	23	for	the	25K	and	50K	runs,	and	at	
magnitudes	fainter	than	~21	for	the	100K	runs.	
	
Region	2	reports	less	complete	results	than	Regions	1	and	3,	running	between	60	
and	80%.		After	analyzing	various	possibilities,	we	ascribe	this	behavior	to	the	
significantly	different	distribution	over	time	of	the	detections	for	Region	2.		Figure	5	
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shows	that	Region	2	is	unique	in	having	a	stretch	of	6	nights	during	which	no	
detections	are	reported.		Region	1	has	a	4-night	detection	gap,	and	Region	3	a	2-
night	gap.		Interestingly,	even	as	the	sample	size	is	enlarged	from	25K	to	100K,	the	
gaps	do	not	shrink,	and	Region	2	remains	more	incomplete	than	1	or	3.	

3.2 The Impact of Cadence 
The	distinct	behavior	of	Region	2	suggested	pursuing	the	question	of	the	relative	
importance	of	cadence	vs.	location	on	the	sky.		We	created	three	new	samples	of	
detections	by	varying	the	time	sampling	while	keeping	the	location	fixed.		The	
detections	were	gathered	from	Region	2	in	Table	1,	within	the	radius	of	5.89	deg	
originally	chosen	to	yield	25K	detections.		Three	time	windows	were	chosen,	each	
encompassing	12	nights,	and	again	only	objects	detected	6	times	or	more	within	
that	time	window	were	retained.		The	three	time	windows	were	picked	to	span	the	
lunation	as	simulated,	with	a	small	amount	of	time	overlap	among	them:	w1=[21,	
32],	w2=[29,	40],	and	w3=[37,	48],	where	the	numbers	in	square	brackets	refer	to	
start	day	and	end	day	for	each	time	window.		The	resulting	samples	contained	
approximately	42K,	4K	and	12K	detections	each.	
	
We	ran	LMODE	on	each	of	these	new	samples.		The	results	in	completeness	and	
reliability	are	shown	in	Figure	7.		Overall	completeness	for	these	time-window	
samples	shows	significant	improvement,	as	does	reliability.		Moreover,	the	sample	
size	varies	significantly	both	up	and	down	from	the	original	25K,	and	that	variation	
does	not	seem	to	affect	the	performance	of	LMODE	in	recovering	asteroids.	The	
tentative	conclusion	is	that	cadence	is	more	important	than	sky	location,	with	more	
investigation	needed	to	quantify	cadence	metrics	that	would	correlate	well	with	
LMODE	performance	in	asteroid	and	NEO	recovery.	
	
We	also	explored	varying	some	parameters	and	exercising	other	features	in	LMODE	
to	improve	its	performance	on	the	data	at	ct2.	One	parameter	relevant	to	coverage	
gaps	in	time	is	the	search	window	for	constructing	3-detection	stringlets	(Fig	1).	
Another	such	parameter	is	the	search	window	for	connecting	stringlets	(Fig	1).	We	
increased	both	of	these	parameters	and	re-ran	the	processing	of	Region	2.		There	
was	very	limited	improvement	in	the	completeness.	
	
LMODE	has	an	option	(not	used	in	the	main	study	here)	to	keep	more	than	one	
stringlet	with	the	same	middle	detection	and	slightly	degraded	linearity,	as	opposed	
to	retaining	the	“best”	(most	linear)	stringlet.		Another	option	(again	not	used	in	the	
main	study)	is	to	allow	the	same	stringlet	to	pair	wih	multiple	other	stringlets	rather	
than	to	the	“best	match”.		Both	of	these	options	were	exercised	in	dedicated	test	
runs	on	Region	2.	The	results	were	promising	but	not	conclusive.		
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3.3 The Impact of False Positives 
In	most	of	the	analysis	we	injected	into	the	simulation	a	false-positive	population	of	
detections	that	amounts	to	10%	of	the	real	detections	(sec	2.2	above).		However,	we	
did	experiment	with	increasing	that	rate	to	test	the	performance	of	LMODE	against	
such	an	increase.		We	ran	for	each	of	the	25K	cases	in	each	Region	2	additional	
cases,	one	with	50%	false	positives	and	one	with	100%	false	positives.		The	intent	is	
to	represent	all	possible	sources	of	false	positives,	from	artifacts	in	image	
differencing	to	real	transients	and	source	variability.		Since	the	distribution	over	
magnitude	of	these	various	populations	of	false	postivies	will	be	complicated	to	
model,	we	adopted	a	simple	distribution	which	is	flat	over	magnitude.			
	
The	results	are	shown	in	Figure	8.		The	effects	of	an	increased	rate	of	false	positives	
is	very	modest.		Reliability	remains	the	same,	and	completeness	is	degraded	by	
barely	a	few	percent	at	the	faint	end,	meaning	for	the	whole	sample,	since	we	plot	
cumulative	completeness.		The	degradation	in	completeness	is	slightly	greater	at	the	
bright	end	because	the	distribution	is	uniform	in	magnitude,	and	therefore	the	
effective	false-positive	rate	is	much	higher	at	the	bright	end.	

3.4 The Performance on NEOs 
The	numbers	of	NEOs	from	the	LSST	simulation	are	relatively	small	in	the	region	
samples	(Table	1),	so	the	results	are	subject	to	small	number	statistics.	The	
completeness	estimates	are	shown	in	Table	2,	and	they	range	from	53%	to	100%,	
with	seven	out	of	nine	cases	reporting	2/3	or	better	completeness.	These	data	are	
also	plotted	in	Figure	9.	The	last	column	in	Table	2	shows	the	completeness	range	
formally	associated	with	the	recovery	and	input	numbers.	The	Poisson	distribution	
interval	corresponding	to	16%	to	84%	confidence,	i.e.	equivalent	to	±1s for	a	
normal	distribution,	was	evaluated	for	the	recovered	number	of	NEOs	and	shown	as	
a	fraction	of	the	input	number.		
	
Interestingly,	Region	2	does	not	lag	behind	Regions	1	and	3	in	completeness,	but	is	
rather	intermediate,	with	Region	3	the	clear	outlier	in	this	respect.	Several	factors	
could	play	into	this	reversal,	but	small	number	statistics	are	quite	unlikely	to	
provide	the	explanation,	since	completeness	does	not	depend	on	sample	size.		The	
strongest	dependence	is	between	completeness	and	Region,	pointing	again	to	the	
importance	of	cadence	in	determining	the	recovery	rate.		See	Section	4.1	for	a	
qualitative	discussion	of	this	dependence.		
	
	

Table	2:	Completeness	of	NEO	recovery	per	test	region	

Sample Name: 
Center-Count 

Number of 
NEOs (input) 

Nr of NEOs 
Recovered 

Completeness ±1s equivalent 
interval 

C1-25K 7 7 1.00 >0.57	
C2-25K 4 3	 0.75 >0.33	
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C3-25K 12 8 0.67 >0.38 
C1-50K 23 20 0.87 >0.65	
C2-50K 8 6 0.75 >0.38	
C3-50K 32  17 0.53 0.39—0.66 
C1-100K 39 31 0.79 0.64—0.92	
C2-100K 18 13 0.72 0.50—0.89	
C3-100K 56 32 0.57 0.46—0.66 

	

4. Discussion 
	

4.1 Cadence 
The	input	simulated	master	detection	list	used	here	was	constructed	from	an	early	
simulation	run	that	followed	the	originally	proposed	LSST	cadence:	two	intra-night	
visits	occurring	three	times	in	a	two-week	window.	For	comparison,	the	PTF	survey	
used	two	intra-night	visits	on	consecutive	nights	(depending	on	the	observing	
program,	weather,	etc.).	Despite	PTF	reaching	depths	much	shallower	than	those	
envisaged	for	LSST	(factors	of	~100	less),	MODE	was	still	able	to	recover	an	
appreciable	fraction	of	moving	objects	in	high	source-density	regions	(e.g.,	the	
galactic	plane),	with	tracks	consisting	of	typically	4	or	5	linked	detections.	These	
regions	are	of	comparable	density	to	LSST's	high	galactic-latitude	sky,	though	the	
PSF	in	LSST	is	expected	to	run	2	to	3	times	smaller	than	in	ZTF.	The	reason	for	a	
relatively	higher	recovery	rate	using	the	(shorter)	PTF-based	cadence	is	that	the	
search-space	was	smaller,	since	the	apparent	distance	travelled	by	objects	on	the	
sky	over	2-3	days	is	shorter.	This	shorter	span	limits	the	search	area	and	hence	
number	of	potential	detections	to	test	when	constructing	candidate	stringlets	and	
tracks	through	velocity	matching.	The	number	of	input	detections	scales	with	area.	
A	larger	search	area	leads	to	a	higher	rate	of	false	linkages	and	strains	compute	
resources	when	forming	and	testing	all	possible	linkages	from	the	detection	stream.	
Our	experiments	show	that	LSST's	longer	observing	cadence	and	its	depth	
compound	the	underlying	combinatorial	problem	when	generating	reliable	tracks.	
The	originally	proposed	LSST	cadence	can	indeed	recover	an	appreciable	fraction	of	
moving	objects	using	a	delicately	tuned	discovery	system,	as	we	show,	but	at	the	
expense	of	computational	resources.	
	
The	post-facto	LSST	cadence	is	clearly	not	uniform	on	the	sky,	at	least	in	this	
simulation.			LSST	is	likely	to	evolve	their	survey	cadence	guidelines,	resulting	in	
further	non-uniformities	in	post-facto	cadence,	both	in	space	and	in	time.		As	the	
gaps	between	visits	grows	larger,	recovery	becomes	more	challenging.	
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4.2 Towards A Realistic Implementation 
In	designing	a	realistic	system	for	mining	the	LSST	data	stream	for	asteroids	and	
NEOs,	it	will	be	necessary	to	improve	on	this	prototype	work	in	a	number	of	ways:	
	

(1) Better	orbit	fitting,	both	faster	algorithms	and	higher	accuracy.	
(2) Weeding	out	known	asteroids	from	the	input	stream,	with	benefits	

increasing	as	the	survey	progresses	and	more	faint	asteroids	are	found.		
(3) Optimized	partitioning	of	the	sky	into	search	zones,	to	make	the	search	

more	tractable	computationally,	especially	that	each	zone	may	require	
slightly	different	tuning	of	the	processing	parameters.	

(4) In	parallel	with	the	partitioning	of	the	sky,	the	time	windows	for	
processing	will	also	need	to	be	optimized,	with	rolling	windows	adapted	
to	position	on	the	sky	and	master	LSST	cadence.		

(5) Further	tuning	of	the	algorithms	with	real	sky	data,	and	the	exploration	of	
options	such	as	those	described	in	sec	3.2,	with	potential	to	improve	
performance	markedly	in	areas	with	challenging	cadences.	

(6) General	speed-up	of	algorithms	and	streamlining	of	computing	
architecture	to	support	production	configurations	rather	than	the	
exploration	work	described	here.		

(7) Methods	to	detect	and	utilize	trailed	image	detections	(already	in	place	
for	ZTF).	

(8) Additional	vetting	of	candidate	tracks	before	they	are	forwarded	to	MPC.	
	
	

5. Conclusions 
Are	there	fundamental	barriers	to	MODE	as	the	search	engine	to	asteroids/NEOs	in	the	
LSST	data	stream	generated	by	the	nominal	survey?		The	answer	is	no,	based	on	our	
ability	to	achieve	high	reliability	and	completeness	for	subsets	of	the	simulated	data,	
albeit	with	some	variations.		Bearing	in	mind	that	that	MODE	is	a	significantly	less	
mature	product	than	the	current	benchmark	(MOPS),	this	simulation	exercise	
represents	great	progress	towards	a	full	implementation.		
	
Is	the	default	cadence	as	implemented	in	the	LSST	simulation	data	set	capable	of	
supporting	an	asteroid/NEO	search?		The	answer	is	overall	yes,	assuming	the	specific	
simulation	used	here	is	representative.		While	certain	time	and	sky	location	
combinations	proved	challenging,	it	was	possible	to	make	inroads	and	improve	
LMODE	performance.		These	challenging	spots	were	a	minor	component	of	the	data	
set,	and	could	be	mitigated	by	modifying	the	time	window	for	subsetting	the	data.	
	
Tuning	to	actual	data	sets	may	become	the	pacing	item,	especially	if	cadence	varies	
significantly	during	the	survey.		How	hard	is	that?		We	found	that	running	with	one	
set	of	parameters	and	options	generated	quite	good	results	overall.	If	the	sliding	
time	window	can	address	the	challenging	spots	as	found	here,	it	may	well	be	that	
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little	tuning	is	needed	on	an	on-going	basis.		On	the	other	hand,	the	modest	amount	
of	parameter	and	option	exploration	in	this	exercise	suggests	that	MODE	has	wide	
latitude	for	adjusting	to	variable	cadence	and	difficult	spots.	
	
Is	LMODE	capable	of	scaling	up	to	meet	a	full	implementation	challenge?		Based	on	
the	current	codebase	running	on	limited	hardware,	LMODE	can	meet	the	full	load	of	
the	LSST	survey	data	stream.		Moreover,	ZTF	will	start	its	science	survey	in	January	
2018,	providing	a	real-world	benchmark	to	enable	a	more	quantitative	evaluation,	
with	projected	data	rate	and	alert	rate	about	10%	of	the	LSST	rates.	
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Figure	1.			Schematic	showing	the	construction	of	moving-object	tracks	in	MODE	(Section	1.1).	

Figure	2.		Overview	of	iterative-thinning	approach	using	LMODE	together	with	the	orbit-fitting	software,	
Find_Orb.	
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Figure	3.	All	detections	contained	in	the	original	simulation	data	provided	by	LSST	within	a	radius	of	
8.77	deg	of	the	Region	2	center,	shown	as	a	black	dot.	Detections	are	color-coded	by	number	of	nights.	
The	hexagonal	patterning	is	presumably	a	reflection	of	observing	pattern. 
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Figure	4.	The	detections	retained	in	the	50k	subset	within	a	radius	of	8.77	deg	of	the	Region	2	center,	
shown	as	a	black	dot.	Detections	are	color-coded	by	number	of	nights.	The	hexagonal	patterning	is	a	
signature	of	the	original	data,	and	is	presumably	a	reflection	of	observing	pattern. 
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Figure	5.	The	histograms	show	the	numbers	of	detections	occurring	in	each	night	for	each	of	three	
regions	used	in	exploring	the	LSST	simulation.	The	regions	are	identified	by	ct1,	ct2	or	ct3	(right-hand	
side	vertical	label).	The	upper	group	of	three	frames	is	for	the	small	radius	regions	containing	about	
25,000	detections	each,	whereas	the	lower	group	is	for	the	large	radius	regions	containing	about	
100,000	detections.	See	Table	1	for	more	details.		Note	the	very	different	distributions	of	the	detections	
over	nights	among	the	three	regions,	and	notice	that	they	persist	even	as	the	radius	grows	to	>10deg. 
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Figure	6.	The	cumulative	completeness	and	reliability	for	all	asteroids	the	three	test	regions	described	
in	Table	1.		The	completeness	is	plotted	as	a	function	of	magnitude.	The	reliability	is	given	as	a	single	
number	for	each	Region	in	the	legend.		Each	plot	refers	to	one	sample	size	(25K,	50K	or	100K)	and	
presents	results	for	each	of	the	three	regions.	 
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Figure	7.	The	cumulative	completeness	and	reliability	for	the	three	time-window	samples	all	centered	
on	Region	2	with	radius	5.89deg	as	described	in	Table	1.		The	legend	gives	the	number	of	detections	in	
each	sample,	the	time	window	used	and	the	reliability.		These	samples	achieve	marked	improvement	in	
completeness	compared	to	the	original	sample,	and	a	significant	improvement	in	reliability. 
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Figure	8.	The	cumulative	completeness	and	reliability	for	all	asteroids	in	the	three	test	regions	
described	in	Table	1,	retaining	only	25K	detections,	but	increasing	the	number	of	false	positive	
detections	in	the	simulation.		The	rate	of	false	positives	goes	from	10%	in	the	left-hand	upper	panel	to	
50%	in	the	right-hand	upper	panel,	to	100%	in	the	lower	panel.	 
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Figure	9.	The	completeness	for	NEOs,	shown	as	one	data	point	for	each	of	the	sample	sizes	in	each	of	the	
three	test	regions	as	described	in	Table	1.		Completeness	is	plotted	against	the	number	of	NEOs	in	the	
input	sample,	to	illustrate	that	small	number	statistics	are	an	unlikely	explanation	for	the	observed	
behavior.		The	top	three	symbols	(blue)	refer	to	Region	1	samples,	the	three	middle	symbols	(green)	to	
Region	2,	and	the	bottom	3	symbols	(red)	to	Region	3.	The	rate	of	false	positives	is	10%	all	cases.	 


