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1. Summary 
 
This document summarizes our first experience with the Intel Xeon Phi. This is a coprocessor that uses 
Intel’s Many Integrated Core (MIC) architecture to speed up highly parallel processes involving intensive 
numerical computations. The MIC coprocessor communicates with a regular Intel Xeon (“host”) processor 
through its operating system. The Xeon Phi coprocessor is sometimes referred to as an “accelerator”. In a 
nutshell, the Xeon Phi consists of 60 1.052 GHz cores each capable of executing four concurrent threads 
and delivering one teraflop of performance. For comparison, the host processor consists of 16 2.6 GHz 
cores, with two admissible threads per core. More details on the MIC hardware can be obtained from the 
references in Section 8. 
 
Rather than present yet another guide on how to efficiently program for the Xeon Phi, our goal is to 
explore whether (and when) there are advantages in using the Xeon Phi for the processing of astronomical 
data, e.g., as in a production pipeline. Such pipelines are common-use at the Infrared Processing and 
Analysis Center (IPAC) and range from the instrumental calibration of raw image data, astrometry, image 
co-addition, source extraction, photometry, and source association. We also outline some lessons learned 
to assist future developers. Note: the findings and opinions reported here are exclusively the author’s and 
do not reflect those of Intel or of any individual. 
 
IPAC has recently acquired a single Xeon Phi card for preliminary benchmarking. We find in general that 
all existing heritage software based on C/C++/Fortran code can be made to run natively on the Xeon Phi 
with no recoding. However, whether it will run optimally to fully exploit the MIC architecture is a 
different question entirely. The answer is usually no. Even software that has been extensively 
multithreaded to utilize a multicore processor isn’t guaranteed to run faster on the Xeon Phi than on a 
regular Intel Xeon machine. In fact, depending on memory and/or disk I/O usage, it can be much slower. 
 
The key is to make efficient use of the Xeon Phi MIC architecture. This is not designed to handle jobs that 
are memory (primarily RAM) intensive. It is designed to utilize wide vector instruction units for floating 
point arithmetic (see below for details). Therefore, the types of problems the Xeon Phi is well suited for 
are intensive numerical computations with a low memory bandwidth. Additionally, the computations need 
to use one of the highly optimized vector math libraries that were implemented using assembly language 
constructs tuned specifically for the Xeon Phi architecture. Knowing this programming model beforehand 
can assist a developer to design software such that segments with intense numerical calculations can be 
offloaded to the Xeon Phi to be accelerated. The host processor then does most of the data I/O and memory 
management. 
 
This document is organized as follows: 
 
Section 2 – Benchmarks conducted 
Section 3 – Programming philosophy, execution modes, and some lessons learned 
Section 4 – Preliminary “naïve” testing 
Section 5 – Reaching One Teraflop performance 
Section 6 – Testing the ICORE image co-addition module 
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Section 7 – Conclusions and words of wisdom 
Section 8 – References and further reading 
Section 9 – Appendices: the author’s “simple” benchmarking codes 
 
2. Benchmarks conducted 
 
To demonstrate that our Xeon Phi card performs according to the vendor’s specifications and to explore its 
performance relative to the Xeon host, we ran three separate experiments: 
 

1. A preliminary “naïve” test that multiplies two large matrices using explicit looping of matrix 
elements where loops were multithreaded using OpenMP pragmas. See Section 4. This makes 
heavy use of single-precision floating point arithmetic. A similar version with computations in 
double-precision yielded similar results. This code was compiled to run in “native-MIC” mode 
(see Section 3 for definition), “MIC-offload” mode, and “Host-exclusive” mode. 
 

2. A test that also multiplies two large matrices but now using the highly (Phi-)optimized Math 
Kernel Library (MKL) to perform the matrix calculations. This also uses OpenMP to assist with 
multithreading. See Section 5. This code was compiled to run in “native-MIC mode” (see Section 
3 for definition), “MIC-offload” mode, and “Host-exclusive” mode. 

 
3. A test that uses the multithreaded image co-addition module from the “Image Co-addition with 

Optional Resolution Enhancement” (ICORE) tool. See Section 6. Documentation and download 
information is available at: http://web.ipac.caltech.edu/staff/fmasci/home/icore.html This code was 
compiled to run only in “native-MIC” and Host-exclusive modes (see Section 3). 
 

3. Programming philosophy, execution modes, and some lessons learned 
 
The literature and various online documents broadly outline some “best practices” when programming for 
the Xeon Phi. But it’s not all complete, nor collected in one place, or detailed enough to use in a practical 
sense, especially for a novice. Here’s a summary of the programming models as well as some not-so-
obvious ones that were (re)discovered from experimentation. 
 

• The GNU compilers (e.g., gcc) are not suitable for compiling code for the Xeon Phi (for both 
native execution and offloading from the host). The Intel Compilers (e.g., icc) have the requisite 
optimization flags for code to execute efficiently on the Xeon Phi. This was discovered the hard 
way. 
 

• The Xeon Phi is intended for highly parallelized numerical computations whose runtime scales 
linearly up to some maximum number threads that can be run concurrently on any processor, 
whether it’s a regular Intel Xeon (host) or a Phi. For the Xeon Phi, the goal is to observe perfect 
linear scaling up to 120 threads (2 threads per core) before using additional Phi cards in a cluster 
setup. It is recommended that this scalability be demonstrated first on regular host processors 
before utilizing the Xeon Phi. 

 
• Code that does heavy numerical work should also have a low memory bandwidth. Local CPU 

caches should be used as much as possible if there is frequent access to data, not the main RAM. 
This is referred to as maintaining “locality of reference”. It is advised to keep all memory access 
within the L2 cache if possible. L2 is about 25 MB over all 60 cores on the Xeon Phi. I.e., there’s 
little wiggle room – one of the challenges of optimizing code for the Xeon Phi. 
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• Make efficient use of the 64 byte-wide vector units (as opposed to 32 bytes on regular Xeon 
CPUs). I.e., 16 floats (or 8 doubles) can fit in the registers and be operated on simultaneously. The 
Single Instruction Multiple Data (SIMD) instruction set used for vector units on the Xeon Phi is 
not SSE compliant (Streaming SIMD Extension). This is applicable to Intel Xeon E5 processors 
only. Some time was spent using SSE-optimized compilation flags for the Xeon Phi that actually 
lead to a degradation in performance. The key is to use no SSE-specific flags when compiling for 
the Xeon Phi. 

 
• If you are compiling to run natively on the Xeon Phi, you can get better performance if memory is 

allocated such that it’s aligned on 64 byte cache-line boundaries. This can be achieved using the 
posix_memalign() or malloc_aligned() functions. For even better performance, you 
can make the array size a multiple of 16 for single-precision floating point, or 8 for double-
precision, otherwise the unused registers will be internally masked and some overhead is incurred. 

 
• Allow loops in the code to be auto-vectorized (unrolled) by the compiler. This optimizes the 

processing for the SIMD vector architecture on each individual core. At times, the icc compiler 
can be stubborn and refuse to auto-vectorize a loop because it thinks there’s some variable 
dependence. You can use “#pragma simd” to force auto-vectorization by the compiler provided 
you’re certain it’s safe to unroll the loop in question. 

 
• The compiler-assisted auto-vectorization step mentioned above is usually not enough to fully 

optimize code for the Xeon Phi. It’s a necessary step for the SIMD 64-byte vector processing on 
each core, but more work on explicit multithreading to utilize all cores is needed if you have loops 
operating on large arrays of data with no dependencies between the variables. The latter can be 
achieved using either the openMP library via “omp pragmas” or via the pthreads library directly. 

 
• Use the highly optimized vector/matrix functions in Intel’s Math Kernel Library (MKL) or lower 

level Vector Math library (VML). These libraries use optimized assembly language that takes 
advantage of the SIMD vector instruction set for the Xeon Phi. So far, I've only been able to run 
things faster on the Xeon Phi (than on the host) when using MKL routines. In the end, all 
arithmetic operations on data arrays can be performed using vector/matrix operations so it is 
advised to use these whenever possible. One finding with MKL (see benchmarking below) is that 
computations run more efficiently for relatively large input vectors and matrices. This establishes 
the power of the Xeon Phi. More threads are automatically spawned for big jobs. It’s analogous to 
a jet engine receiving more oxygen the faster it goes. At high speed, it performs more efficiently in 
terms of fuel consumption. 

 
We explored two compilation/execution modes while testing on the Xeon Phi: 
 

1. “Native-MIC” mode where a fully-native Xeon Phi binary is compiled for execution on the MIC 
O/S directly. This is a good choice when the code has low data I/O and/or memory needs and 
consists primarily of intensive numerical computations. 

 
2. “MIC-offload” mode where a heterogeneous binary is compiled to run on the host CPU with 

selected code segments offloaded to the Xeon Phi during runtime. The code segments intended for 
execution on the Xeon Phi are designated using offload pragmas targeted for the MIC. The 
advantage here is that the host processor can manage any high data/memory I/O needs while 
segments involving heavy numerical work can be “accelerated” on the Xeon Phi. Results are then 
copied back to the host file system with little overhead. 
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4. Preliminary “naïve” testing 
 
We first conducted a simple test that multiplies two matrices with 3000 × 3000 elements each. We call this 
test “naïve” since it’s programmed using nested loops over each matrix element and carrying out the 
arithmetic as we go along, i.e., as the textbooks say when multiplying matrices. The multiplication 
operation was repeated 10 times and the performance metrics were averaged at the end. We have also 
parallelized the loop computations using OpenMP pragmas (see code in Section 9.a.). We were suspicious 
from the outset that this approach was non-optimal for the Xeon Phi, but we wanted to see where this 
would take us. Such code is typical of heritage software lying around for performing matrix computations 
(without the multithreading of course). 
 
Test code “test1.c” (Section 9.a.) was compiled to run in “native-MIC” mode, “MIC-offload” mode, and 
“Host-exclusive” mode (see Section 3 for definitions). Figure 1 shows the number of Floating point 
Operations per second, or FLOPs/sec versus the number of threads spawned. All computations used single-
precision floating point. Only the native-MIC (red) and Host-exclusive (blue) runs are shown. We found 
that the MIC-offload mode performed ~10% worse (lower flops) than the native-MIC run. This is probably 
due to the additional overhead in transferring (offloading) the large data arrays from the host’s main 
memory to the Xeon Phi. 
 
Figure 1 shows that the maximum achievable performance on the Xeon Phi (~120 GFlops/sec) is 
comparable to that on the host (within the measured variance). This is contrary to expectations reported by 
the vendor and others in the literature. 
 
The theoretical performance one expects from the Xeon Phi is: 
 
#GFlops/sec = 16[#single-precision floats in SIMD vector unit] × 2[FMA] × 1.052[GHz] × 60[cores] 
                     = 2019.84 GFlops/sec 
                     ~ 2 TFlops/sec. 
 
While the theoretical performance one expects from the Xeon host processor is: 
 
#GFlops/sec = 8[#single-precision floats in SIMD vector unit] × 2[FMA] × 2.599[GHz] × 16[cores] 
                     = 665.34 GFlops/sec 
                     ~ 0.66 TFlops/sec.  
 
FMA represents the number of arithmetic operations in a “Fused-Multiply Add” instruction. That is, these 
Intel processors can execute a “multiply and add” (really two separate operations) as a single instruction, at 
the same clock rate. 
 
Therefore, we expect the Xeon Phi to outperform the Xeon host by a factor of ~ 3. This is nowhere seen in 
our first “naïve” test and we were rather dumbstruck. Many other “simple” codes were also tested (with 
explicit threading over all loops), but all performed equally as well and sometimes worse on the Xeon Phi 
than on the host. The solution was revealed by consulting previous benchmarks in the literature and 
investigating how floating-pointing arithmetic operations can be performed more optimally on the Xeon 
Phi. Obviously, auto-vectorization and explicit threading of loops is not enough. 
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Figure 1: Single-precision floating-point performance for the simple “naïve” matrix multiplication 
test code (test1.c) involving two 3000 × 3000 matrices. Blue curve is for the “Host-exclusive” runs 
and red curve is for the Xeon Phi runs using “native-MIC” mode. Dotted line is at 120 GFlops/sec. 

 
 
5. Reaching One Teraflop performance 
 
We decided to replace the “naïve” multiplication step in test1.c (Section 4) with the sgemm() matrix 
multiplication function from Intel’s Math Kernel Library (MKL). As outlined in Section 3, this library uses 
optimized assembly language constructs to take advantage of the SIMD vector instruction set for Xeon Phi 
coprocessors. Results for test code “test2.c” (Section 9.b.) are shown in Figure 2. The long sought-after 
one TFlops/sec performance metric is now achieved, however, this is still about a factor of two below the 
theoretical prediction of ~ 2 TFlops/sec (see Section 4). Benchmarks advertised by the vendor and others 
peak at ~ 1.6 - 1.8 TFlops/sec, but no guidance is given on the set-up or circumstances under which these 
are achieved. Furthermore, relative to the host processor, we find the Xeon Phi performs ~ 2.5 better! This 
isn’t too far off from the theoretical prediction of ~ 3 reported in Section 4. It appears the use of MKL 
routines for floating-point arithmetic is pivotal in exploiting the Xeon Phi. 
 
As a further test, we fixed the number of threads to the maximum possible on the Xeon Phi (240) and the 
host processor (32) and explored the performance as a function of matrix size using test code test2.c. 
Figure 3 shows the result. It appears that we reach maximum performance when the matrix size exceeds 
2500 × 2500 elements. That is, both the Xeon host and Phi perform best (with better throughput and 
efficiency) when the number of computations is large. This shows the Xeon Phi is best suited for 
large/heavy numerical problems and not worth the effort for small ones where data/memory I/O is likely to 
dominate (relatively speaking). 
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Figure 2: Single-precision floating-point performance for our optimized matrix multiplication test 
code (test2.c) involving two 3000 × 3000 matrices. Blue curve is for the “Host-exclusive” runs and 
red curve is for the Xeon Phi runs using “native-MIC” mode. Horizontal dotted lines (at 400 and 
1000 GFlops/sec) are to guide the eye. 
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Figure 3: Single-precision floating-point performance for our optimized matrix multiplication test 
code (test2.c) as a function of matrix size. Blue curve is for the “Host-exclusive” runs and red curve 
is for the Xeon Phi runs using “native-MIC” mode. The number of concurrent threads used was 
fixed at the maximum values of 32 and 240 for the host and Xeon Phi respectively. 
 
6. Testing the ICORE image co-addition module 
 
We also conducted preliminary experiments with the ICORE tool – “Image Co-addition with Optional 
Resolution Enhancement” (http://web.ipac.caltech.edu/staff/fmasci/home/icore.html). This tool consists of 
a set of modules to perform image overlap-offset corrections, photometric-gain corrections, interpolation, 
outlier masking, co-addition, and optional resolution enhancement. The input images are supplied as files 
in FITS format. All the modules are multithreaded to take advantage of parallelization on multicore 
processors. We recompiled the co-addition module awaico and all dependent libraries (libcfitsio, libwcs, 
libtwoplane) from ICORE to run natively on the Xeon Phi (“native-MIC” mode), as well as on the host 
processor (“Host-exclusive” mode). Due to the recoding effort needed to generate an executable in “MIC-
offload” mode, we did not explore this mode at this time (however, see discussion below). 
 
Our test consisted of co-adding 29 overlapping intensity images (with accompanying mask and uncertainty 
images) from the WISE mission onto a 0.4° × 0.4° footprint. This footprint was centered on the IC342 
galaxy. Each input image consists of ~ 1016 × 1016 pixels. Runtimes for the host processor and Xeon Phi 
(in native-MIC mode) are shown in Figure 4. Clearly, the host processor outperforms the native-MIC 
execution by about a factor of 4. This is somewhat expected since native-MIC mode execution is not 
optimal for this type of application. The co-addition module contains a number of disk and memory I/O 
steps interspersed with numerical computations (e.g., sky-to-pixel mappings, resampling, and 
interpolations). As mentioned above, the Xeon Phi alone cannot handle heavy data I/O. 
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6.a.  Future Upgrades 
 
A worthwhile exercise would be to recode the co-addition module (and other modules) such that only the 
compute-heavy steps are offloaded to the Xeon Phi (MIC-offload mode). Even more, we can make 
extensive use of the trig and vector processing functions from Intel’s Math Kernel Library (MKL) – all 
optimized for the Xeon Phi. In the end, we expect the compute-heavy steps alone to be significantly 
accelerated, by perhaps a factor of 2.5 (analogous to Figures 2 and 3). Note however that the data I/O 
overhead (on the host) will always remain. We expect overall runtimes (blue curve in Figure 4) to drop by 
>~ 30%. This is a work in progress. 
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Figure 4: Runtime as a function of number of threads for the ICORE image co-addition module 
executed on the Host processor (blue curve) and the Xeon Phi (red curve; in native-MIC mode). 

 
In the course of testing, we made extensive use of the Coprocessor Offload Infrastructure (COI) tools. 
These enable one to submit native-MIC compiled binaries to the Xeon Phi (via micnativeloadex) as well as 
monitor them in real time (via micsmc). Figure 5 shows an example snapshot of the monitoring tool.  
 

 
Figure 5: Example of the Xeon Phi monitoring tool (micsmc) with all 60 cores being utilized.  
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7. Conclusions and words of wisdom 
 
While most heritage software will run on the Xeon Phi with little effort, there’s no guarantee it will run 
optimally to fully exploit its architecture, even if the segments that carry out intensive numerical 
computations have been highly parallelized. Some recoding using offload pragmas targeted for the MIC 
and use of vector/matrix libraries optimized for numerical work is inevitable. This could be expensive for 
existing codes that are not structured in a manner to trivially separate the heavy data/memory I/O steps 
from the pure computational ones. 
 
Approximately one teraflop can be obtained on the Xeon Phi when using optimized vector-math libraries. 
Even then, we find this is only a factor of 2 to 2.5 times greater than that achieved on regular Intel Xeon 
E5 processors with 16 2.6 GHz cores. Is a factor of 2 to 2.5 improvement really worth the human labor to 
recode existing “numerical-heavy” software for optimal execution on Xeon Phi cards? This depends on the 
developer’s experience with the software and its complexity, but more importantly, on the type of software 
being run. As it stands, much of the software executed in IPAC’s mission-production pipelines (Spitzer, 
WISE, and PTF for example) are primarily data I/O limited and at the mercy of fileservers cooperating and 
responding in sync with the CPUs. 
 
However, this doesn’t mean there’s no place for Xeon Phi cards at IPAC. Future developers should use the 
Xeon Phi when it makes sense to do so. Existing heritage code can be judiciously recycled with an eye for 
“accelerating” heavy computational steps with the Xeon Phi. There’s always a gain, but as mentioned 
above, the factor of 2 to 2.5 improvement over regular processors won’t buy you much if most of the time 
is spent moving data off/onto disks and/or in/out of RAM. The compute-heavy steps (until now) are 
usually a small fraction (<~ 30%) of pipeline processing budgets for astronomical applications that go 
from raw-image data to source-catalogs. Regular Intel Xeon processors are getting faster and more 
efficient at managing memory. Nonetheless, there will be scientists who would benefit from the Xeon Phi 
by running customized code involving heavy numerical work, e.g., N-body simulations, gravitational 
lensing shear calculations, or radiative transfer models. 
 
8. References and further reading 
 
The following links and documents contain good examples and guidelines for a novice when programming 
for the Intel Xeon Phi. 
 

• http://software.intel.com/sites/default/files/article/335818/intel-xeon-phi-coprocessor-quick-start-
developers-guide.pdf 

• http://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-
coprocessors 

• http://www.drdobbs.com/parallel/programming-intels-xeon-phi-a-jumpstart/240144160 
• http://www.prace-project.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi.pdf 
• http://software.intel.com/sites/default/files/article/366893/offload-runtime-for-the-intelr-xeon-

phitm-coprocessor.pdf 
• http://research.colfaxinternational.com/file.axd?file=2013%2F5%2FColfax_Static_Libraries_Xeo

n_Phi.pdf 
• https://hpcforge.org/plugins/mediawiki/wiki/pracewp8/images/6/68/XeonPhi.pdf 
• http://software.intel.com/en-us/articles/getting-started-with-openmp 
• http://d3f8ykwhia686p.cloudfront.net/1live/intel/An_Introduction_to_Vectorization_with_Intel_C

ompiler_021712.pdf 
 
9. Appendices 
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Below are the C codes used in the “simple” benchmarking tests presented in Sections 4 and 5. These were 
written by combining various code snippets (with much experimentation) from the links in Section 8. 
Further below are the compilation, environment variables and execution command lines used. 
 
9.a.  test1.c: code used to generate Figure 1 (Section 4) 
 
#ifndef MIC_DEV 
#define MIC_DEV 0 
#endif 
  
#include <stdio.h> 
#include <stdlib.h> 
#include <omp.h> 
#include <mkl.h> /* needed for the dsecnd() timing function. */ 
#include <math.h> 
 
/* Program test1.c: multiply two matrices using explicit looping of elements. */ 
 
/*---------------------------------------------------------------------*/ 
/* Simple "naive" method to multiply two square matrices A and B 
   to generate matrix C. */ 
 
void myMult(int size, 
            float (* restrict A)[size], 
            float (* restrict B)[size], 
            float (* restrict C)[size])  
{ 
  #pragma offload target(mic:MIC_DEV) in(A:length(size*size)) \ 
                                      in( B:length(size*size)) \ 
                                      out(C:length(size*size)) 
  { 
    /* Initialize the C matrix with zeroes. */ 
 
    #pragma omp parallel for default(none) shared(C,size) 
    for(int i = 0; i < size; ++i) 
      for(int j = 0; j < size; ++j) 
        C[i][j] = 0.f; 
      
    /* Compute matrix multiplication. */ 
 
    #pragma omp parallel for default(none) shared(A,B,C,size) 
    for(int i = 0; i < size; ++i) 
      for(int k = 0; k < size; ++k) 
        for(int j = 0; j < size; ++j) 
          C[i][j] += A[i][k] * B[k][j]; 
  } 
} 
  
/*---------------------------------------------------------------------*/ 
/* Read input parameters; set-up dummy input data; multiply matrices using 
   the myMult() function above; average repeated runs. */ 
 
int main(int argc, char *argv[]) 
{  
  if(argc != 4) { 
    fprintf(stderr,"Use: %s size nThreads nIter\n",argv[0]); 
    return -1; 
  } 
  
  int i,j,nt; 
  int size=atoi(argv[1]); 
  int nThreads=atoi(argv[2]); 
  int nIter=atoi(argv[3]); 
    
  omp_set_num_threads(nThreads); 
 
  /* when compiled in "mic-offload" mode, this memory gets allocated on host, 
     when compiled in "mic-native" mode, it gets allocated on mic. */ 
 
  float (*restrict A)[size] = malloc(sizeof(float)*size*size); 
  float (*restrict B)[size] = malloc(sizeof(float)*size*size); 
  float (*restrict C)[size] = malloc(sizeof(float)*size*size); 
 
  /* this first pragma is just to get the actual #threads used 
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     (sanity check). */ 
 
  #pragma omp parallel 
  { 
    nt = omp_get_num_threads(); 
      
    /* Fill the A and B arrays with dummy test data. */ 
    #pragma omp parallel for default(none) shared(A,B,size) private(i,j) 
    for(i = 0; i < size; ++i) { 
      for(j = 0; j < size; ++j) { 
        A[i][j] = (float)i + j; 
        B[i][j] = (float)i - j; 
      } 
    } 
  } 
    
  /* warm up run to overcome setup overhead in benchmark runs below. */ 
 
  myMult(size, A,B,C); 
  
  double aveTime,minTime=1e6,maxTime=0.; 
 
  /* run the matrix multiplication function nIter times and compute 
     average runtime. */ 
 
  for(i=0; i < nIter; i++) { 
    double startTime = dsecnd(); 
    myMult(size, A,B,C); 
    double endTime = dsecnd(); 
    double runtime = endTime-startTime; 
    maxTime=(maxTime > runtime)?maxTime:runtime; 
    minTime=(minTime < runtime)?minTime:runtime; 
    aveTime += runtime; 
  } 
  aveTime /= nIter; 
    
  printf("%s nThreads %d matrix %d maxRT %g minRT %g aveRT %g GFlop/s %g\n", 
         argv[0],nt,size,maxTime,minTime,aveTime, 2e-9*size*size*size/aveTime); 
  
  free(A); 
  free(B); 
  free(C); 
 
  return 0; 
} 
 
9.b.  test2.c: Code used to generate Figures 2 and 3 (Section 5) 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <omp.h> 
#include <mkl.h> 
#include <math.h> 
 
/* Program test2.c: multiply two matrices using a highly thread-optimized 
   routine from the Intel Math Kernel Library (MKL). */ 
 
/*----------------------------------------------------------------------*/ 
/* Multiply two square matrices A and B to generate matrix C using the 
   optimized sgemm() routine (for single precision floating point) from MKL. */ 
 
float fastMult(int size,  
               float (* restrict A)[size], 
               float (* restrict B)[size], 
               float (* restrict C)[size], 
               int nIter) 
{ 
  float (*restrict At)[size] = malloc(sizeof(float)*size*size); 
  float (*restrict Bt)[size] = malloc(sizeof(float)*size*size); 
  float (*restrict Ct)[size] = malloc(sizeof(float)*size*size); 
  
  /* transpose input matrices to get better sgemm() performance. */ 
 
  #pragma omp parallel for 
  for(int i=0; i < size; i++) 
    for(int j=0; j < size; j++) { 
      At[i][j] = A[j][i]; 
      Bt[i][j] = B[j][i]; 
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    } 
 
  /* scaling factors needed for sgemm(). */ 
 
  float alpha = 1.0f; 
  float beta = 0.0f; 
 
  /* warm up run to overcome setup overhead in benchmark runs below. */ 
 
  sgemm("N", "N", &size, &size, &size, &alpha, 
        (float *)At, &size, (float *)Bt, &size, &beta, (float *) Ct, &size); 
 
  double StartTime=dsecnd(); 
 
  for(int i=0; i < nIter; i++) 
    sgemm("N", "N", &size, &size, &size, &alpha, 
          (float *)At, &size, (float *)Bt, &size, &beta, (float *) Ct, &size); 
 
  double EndTime=dsecnd(); 
 
  float tottime = EndTime - StartTime; 
  float avgtime = tottime / nIter; 
  printf("tot runtime = %f sec\n", tottime); 
  printf("avg runtime per vec. mult. = %f sec\n", avgtime); 
  float GFlops = (2e-9*size*size*size)/avgtime; 
 
  free(At); 
  free(Bt);  
  free(Ct); 
  
  return ( GFlops ); 
} 
 
/*----------------------------------------------------------------------*/ 
/* Read input parameters; set-up dummy input data; multiply matrices using 
   the fastMult() function above; average repeated runs therein. */ 
  
int main(int argc, char *argv[]) 
{ 
  if(argc != 4) { 
    fprintf(stderr,"Use: %s size nThreads nIter\n",argv[0]); 
    return -1; 
  } 
  
  int i,j,nt; 
  int size=atoi(argv[1]); 
  int nThreads=atoi(argv[2]); 
  int nIter=atoi(argv[3]); 
    
  omp_set_num_threads(nThreads); 
  mkl_set_num_threads(nThreads); 
 
  /* when compiled in "mic-offload" mode, this memory gets allocated on host, 
     when compiled in "mic-native" mode, it gets allocated on mic. */  
 
  float (*restrict A)[size] = malloc(sizeof(float)*size*size); 
  float (*restrict B)[size] = malloc(sizeof(float)*size*size); 
  float (*restrict C)[size] = malloc(sizeof(float)*size*size); 
  
  /* this first pragma is just to get the actual #threads used  
     (sanity check). */ 
 
  #pragma omp parallel 
  { 
    nt = omp_get_num_threads(); 
     
    /* Fill the A and B arrays with dummy test data. */ 
    #pragma omp parallel for default(none) shared(A,B,size) private(i,j) 
    for(i = 0; i < size; ++i) { 
      for(j = 0; j < size; ++j) { 
        A[i][j] = (float)i + j; 
        B[i][j] = (float)i - j; 
      } 
    } 
  } 
    
  /* run the matrix multiplication function nIter times and average  
     runs therein. */ 
 
  float Gflop = fastMult(size,A,B,C,nIter); 
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  printf("size = %d x %d; nThreads = %d; #GFlop/s = %g\n", 
         size, size, nt, Gflop); 
  
  free(A); 
  free(B); 
  free(C); 
   
  return 0; 
} 
 
9.c. Compilation and runtime environment for codes above 
 
All environment variables and example command lines below were set/executed directly on the Host 
(Xeon E5) processor. The environment variables containing “MKL” and compiler option “–mkl” can be 
omitted for the “naïve” test code of Section 9.a. Furthermore, for the code in Section 9.b., the 
MKL_MIC_ENABLE environment variable was used to control the offloading of MKL-specific routines to 
the Xeon Phi. This avoids explicit use of offload “target(mic)” pragmas for the MKL routines. 
 
Depending on the execution mode, three different binaries were generated for each test?.c code above: 
test_mic, test_mic_offload, test_host. The input arguments are “size of square matrix along one 
dimension”; “number of concurrent threads”; “number of iterations for runtime averaging”.  
 
Full native execution on the Xeon Phi: 
 
source /opt/intel/bin/compilervars.csh intel64 
 
icc -mkl -O3 -mmic -openmp -L /opt/intel/lib/mic -Wno-unknown-pragmas -std=c99 
-vec-report2 -liomp5  -o test_mic test.c 
 
setenv SINK_LD_LIBRARY_PATH 
/opt/intel/composer_xe_2013/lib/mic:/opt/intel/mkl/lib/mic; 
setenv MKL_MIC_ENABLE 1; 
setenv MIC_ENV_PREFIX MIC; 
setenv MIC_KMP_AFFINITY "granularity=thread,balanced"; 
setenv MIC_USE_2MB_BUFFERS 32K 
setenv MIC_MKL_DYNAMIC false 
 
/opt/intel/mic/bin/micnativeloadex ./test_mic -a "3000 240 10"; 
 
Heterogeneous binary with offloading of selective code to the Xeon Phi: 
 
source /opt/intel/bin/compilervars.csh intel64 
 
icc -offload-option,mic,compiler,"-mP2OPT_hpo_vec_check_dp_trip=F -fimf-
precision=low -fimf-domain-exclusion=15  -opt-report 1" -
mP2OPT_hlo_pref_issue_second_level_prefetch=F -
mP2OPT_hlo_pref_issue_first_level_prefetch=F -vec-report2  -O3  -openmp -
intel-extensions -opt-report-phase:offload -openmp-report -mkl -Wno-unknown-
pragmas -std=c99  -o test_mic_offload test.c 
 
setenv MKL_MIC_ENABLE 1; 
setenv MIC_ENV_PREFIX MIC; 
setenv MIC_KMP_AFFINITY "granularity=thread,balanced"; 
setenv MIC_USE_2MB_BUFFERS 32K 
setenv MIC_MKL_DYNAMIC false; 
setenv KMP_AFFINITY "granularity=thread,scatter"; 
 
./test_mic_offload 3000 240 10 
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Host-only execution (no use of the Xeon Phi): 
 
source /opt/intel/bin/compilervars.csh intel64 
 
icc -xhost -mkl -O3 -no-offload -openmp -Wno-unknown-pragmas -std=c99 -vec-
report2 -o test_host test.c 
 
setenv MKL_MIC_ENABLE 0; 
setenv KMP_AFFINITY "granularity=thread,scatter"; 
setenv USE_2MB_BUFFERS 32K; 
setenv MKL_DYNAMIC false; 
 
./test_host 3000 32 10 
 


