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Two models are considered “nested” if one is a subset or an extension of the other. For 
example, the two models f1(x) = mx + c and f2(x) = ax2 + mx + c are nested. A question often 
asked is: how do we decide if a more complex model is “better” at predicting the data than a 
simpler one? If the more complex model does not significantly contribute more information, 
then there’s no reason to accept the parameters estimated there from. The simpler, “more 
parsimonious” model is preferred on all grounds. 
 
The problem boils down to testing if the residual sum of squares from fitting a simple model 
(or χ2 if the squared residuals are weighted by their inverse variance priors) is significantly 
larger than that of the more complex model. Let’s label the minimum chi-square values (after 
parameter estimation) for the simple and complex models by χs

2 and χc
2 respectively. The 

only difference is in the assumed model fs(x,p) or fc(x,q), with number of parameters p, q 
respectively where p < q. 
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Under the null hypothesis that each model “generates” the data, these quantities will follow 
chi-square distributions with N – p and N – q degrees of freedom respectively for fits to 
repeated realizations of the data with errors drawn from N(0, σi). This can be used to check 
for model plausibility given some maximum tolerable probability α (e.g., 0.05) below which 
an experimenter declares it’s unlikely the model could have generated the data. I.e., the 
chance that it did is < α. However, in the spirit of Occam’s Razor, can we do better when 
given two competing (nested) models? 
 
R.A. Fisher (1938) worked out the distribution of the relative difference between χs

2 and χc
2 

under the null hypothesis that the simpler (restricted) model is correct, which is equivalent to 
the statement that some parameters in the complex model are zero. This distribution assumes 
the fit residuals are normally distributed or approximately so. We construct a test statistic 
known as the “F-ratio” (where I presume F stands for Fisher): 
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If the simpler model is correct, this will follow an F-distribution with degrees of freedom  
(ν1, ν2) = (p – q, N – q). We reject the simpler model if F satisfies 1 – CDF(F) < α where 



CDF is the cumulative (F-)distribution function evaluated at F and α is some maximum 
tolerable probability (e.g., 0.05) below which it’s unlikely the simple model generated the 
data. If so, the more complex model is favored. In practice, it’s faster to have a pre-computed 
look-up-table of critical values Fcrit corresponding to different combinations of (α, ν1, ν2). 
For a given F, one then rejects the null hypothesis if F > Fcrit. 
 
Note that if the models are not nested, one cannot use the F-ratio or any likelihood-ratio test 
for that matter. In this case, one may use Akaike’s Information Criterion (AIC) after testing 
for plausibility of each model using e.g., a chi-square (for normally distributed errors) or 
some generalized likelihood method. 
 
 
Further reading 
 
http://en.wikipedia.org/wiki/F-test 
http://en.wikipedia.org/wiki/F-distribution 
http://en.wikipedia.org/wiki/Akaike_information_criterion 
http://www.indiana.edu/~clcl/Q550/Papers/Zucchini_JMP_2000.pdf 
http://www.ime.unicamp.br/~lramos/mi667/ref/19kadane04.pdf 
http://vserver1.cscs.lsa.umich.edu/~crshalizi/notabene/model-selection.html 
http://www.cis.upenn.edu/~mkearns/papers/ms.pdf 
 
 
 
 


