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Here we present the method used to estimate the parameters and uncertainties of our
linear model: (o, 3) where y = a + Gz (see egs. [38] and [39]). As discussed in § 5.1, a
determination of these parameters by directly minimizing the x? function in equation (40) is
not possible due to the quasi-singular nature of the covariance matrix C. The mathematics
of linear fits with correlated data points is not new. In fact, Fisher et al. (1994) and Bern-
stein (1994) have discussed this in the context of fitting models to the two-point correlation
function with “bootstrap” derived covariance matrices which in general could be singular,
or close to it. We expand on the methods presented therein below.

First, we recast equation (40) in matrix form:
Xz(a= 3) = (g - gm)T C_l (g - gm) ) (Bl)

where 7 is a column vector of the data y; = y;...yy, and @, the corresponding vector of
“expected” model values y,,,, = a+8z;. The first step of principal component analysis (PCA;
e.g., Kendall 1980) is to find a set of linear combinations of the measured values y; which are
linearly independent. In other words, the goal is to find a new “basis” (coordinate system) in
which correlations are non-existent. This amounts to finding a matrix M that diagonalizes

the covariance matrix C:
M/ CM = D, (B2)

where D is diagonal. In particular, the symmetry of C (= C”) guarantees the existence of a
diagonalizing matrix M whose columns form an orthogonal set of N eigenvectors for C with
corresponding eigenvalues along the diagonal of D. Once C is diagonolized, the power of



PCA is in the second step where we select only those eigenvectors (basis components) which
are the most stable, or have relatively large eigenvalues to ensure stability in x2. This will
become more apparent below.

The specific procedure is as follows. If there are N elements in g, we form the N x
M matrix M from the M stable eigenvectors of C. We then define a new dataset (of M
“observables”) and corresponding expected (model) values in this new basis,

z=M"y; (B3)
and
Z_m - M’I‘gm; (B4)

respectively, where the new components are guaranteed to be linearly independent with a
covariance matrix which is diagonal (i.e., with vanishing covariances) given by D (eq. [B2]).
We can now define a new “simplified” x? function,

Xz(a’ 3) = (2 - 'é‘m)T:D—1 (2 - Zm) . (B5)

As discussed above, stability in x? is ensured by selecting only those eigenvectors of C
with the largest eigenvalues. The eigenvalues (diagonal elements of D) are also actually the
variances for the new dataset Z, 02 = D;;. In other words, D! in equation (B5) is none
other than
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and on expanding equation (B5), the x? reduces to the simple definition:
M 2
p [2i — 2m, (@, B)]
X, 8) =) g (B7)
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By selecting the largest eigenvalues (variances), we therefore avoid erroneously inflating x?
and making it unstable against changes in « and S.

Since the model for y; = log@w(#}) is linear (eq. [38]), the minimization of x? is analytic.
From equations (B3) and (B4), components of the new data vectors Z and Z,, can be expanded
as:

N
2z = ZMkiyk, (B8)
k=1



and
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= au; + B, (B9)

respectively, where the M,; represent the matrix elements of the diagonalizing matrix M
andi=1... M. We use u;, v; as shorthand notation to represent the coeflicient sums of «
and 3. Applying the minimization conditions to equation (B7): dx?%/0ca = 0; dx*/98 = 0,
and solving the simultaneous system for « and 3, we have

o 5,55 — 5354,
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38 5251 — 5153
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o2 = —= .
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oh = —32 :
P 8,85 - 8%
—S:
COV(Q, ;3) = Ser—:Sf, (B].O)

where the variances and covariance follow from the inverse of the coefficient matrix repre-
senting the simultaneous system with determinant S»S; — S2. The S, are defined by
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where u;, v;, and z; were defined in equations (B8) and (B9) and as discussed above, D;; =
0?(z) (the diagonal elements of D).



Note that the above x? minimization procedure (eq. [B7]) does not depend in any way
on the errors in the y; (or residuals z; — 2, ) being Gaussian. It is only important if one
wants to treat the x? function as having a true y?-distribution (with two degrees of freedom)
with a likelihood L = exp(—x?/2) for the purpose of setting confidence limits on model
parameters, or, to assign a probability for the goodness of fit. Nonetheless, the central limit
theorem ensures that the underlying distribution of errors in the original @w,(©;) will be
approximately Gaussian. Assuming that the o[@,(0;)] are Gaussian, what about the errors
in y; = log w2(6;), or, linear combinations thereof (eq. [B8]) used to define the x? in equation
(B7))?

We find that the normalized PDF for the logarithm of a Gaussian random variable
Wy, = W2(O;), can be written:

o tad s Ly
1 _ _ —\\2
= sz. exp [—W(wz — (wy,)) ],
~ (i) G(my,) for %2) <1, (B22)

where the (@,,), is a boot-strapped ensemble average of some w, with variance o?(,).
The last expression follows from the substitution y; = logw, where G(,,) is the Gaussian
form, and the approximation in the last step is valid when the @, are close to their en-
semble averages (i.e., the variance is small). At all angular separations, we typically have
o(ws,) /w2, < 0.05, so that this approximation is justified to reasonable accuracy. In fact, we
find that the approximation P(y;) =~ (ws,) G(@2,) differs from the true expression for P(y;)

(first line in eq. [B22]) by at most 10% in the tails, i.e., at 2 30(@,,). Since any linear
combination of a Gaussian random variable is also Gaussian (e.g., the z; in eq. [B8]), we can
then treat the simple x? function in equation (B7) as a true y?-distribution for the purpose
of computing goodness-of-fit probabilities and assigning confidence limits.

The quantity in equation (B7) is then distributed like x* with v = M — 2 degrees of
freedom about it’s minimum value. The absolute goodness of fit is given by the probability
Q(x2,;,|v) that some measured realization of the data, z;, will yield a x? which exceeds the
observed value x2. by chance (i.e., expected on the basis of random Gaussian fluctuations
alone). This probability is given by the incomplete gamma function (e.g., Press et al. 1999,

p. 216):
‘ 1 e ’
QOCunlV) = =—= / e Y2 1at B23
o) = 50735 |, (B23)

For the full sample all subsamples, we have the range v = 7 — 10 (or M = 9 — 12 principle
components; see above) with x2,;, =~ 5.8 — 12.6 respectively. This range corresponds to Q ~
0.56 — 0.24, indicating that our power-law models for @,() are an adequate representation
of the data. Also, the values of x2 . are in good agreement with those expected from the x?
statistic, i.e., (x2,,) = v, and within standard deviation v/2v.



