
Examples in R for the Novice

Last modified: 23/11/2006 (Frank Masci)

Contents of this Document:
- Goals
- Getting Started with 'R Help'
- Summary of FAQs and Examples presented below
- Answers to FAQs and Example Code
- References

Goals

Rather than present you with another R manual, the focus here is to give some
simple examples to get you started. There are a plethora of manuals and books
out there if you need the details (e.g. how to change the font in the legend of a
plot). A foundation is important before building a program tailored for your own
needs.

It's important to note that this is for beginners, or for those wishing to come up
to speed with the language. There is really no limit with what you can do with R
and its functionality is growing as you read. The documents and websites
referenced below are by no means exhaustive. They serve as good starting
points with other documents referenced therein.

We envisage the number of examples to grow as people in the section continue
to use R for their research and discover new tidbits and tricks that can be
shared. This goes without saying since we are all 'Good Corporate Citizens'.

If you wish to include an example below, please ensure:
you provide a brief one-liner in the "Summary of FAQs and Examples..." 1.
section and your name, e.g. " Contributor:John Knucklehead ".
it is simple as possible (but not too simple) and has a well defined objective;2.
is interspersed with detailed comments;3.
doesn't already exist here in some variation, unless the functionality is vastly 4.
superior, or its objective vastly different.
you use the Courier New, size 8 font to ensure formatting is preserved when 5.
copying and pasting the code into a text file for execution in R, or, directly
into the R GUI;
you update the "Last modified:" field above with the date and your name.6.

Getting Started with 'R Help'

You can install the R programming interface from the ABS software portal. R is
'open source' so supervisor approval is not needed, i.e. there are no licenses and
no limit to the number of simultaneous users. The default installation comes with
a standard set of libraries and packages. You can import more of these to suit

your needs in future (see examples below). Having started the R 'Graphical User
Interface' (GUI), you can play around for yourself by browsing the help files.
Here are a few useful commands on how to access help documentation and
browse the packages available on your system:

To see which packages are installed:
> library()

To see which packages are currently loaded by default on first starting R:
> search()

To see the directories from which R packages are being searched for on your
system:
> .libPaths()

To obtain a listing of all functions ('subroutines') in a package (e.g. the 'MASS'
package):
> library(help=MASS)

To load a particular package (e.g. the 'MASS' package) for use in your session
from a standard installation directory (a standard installation directory is one
listed using the ".libPaths()" command above.):
> library(MASS)

To load a particular package (e.g. the 'sx11' package) for use in your session
from a non-standard installation directory:
> library(sx11,lib.loc="s:\\splus\\library6")

To view the help documentation and usage examples for a specific function
(e.g. the 'rlm' function in the 'MASS' package):
> help(rlm)

Note that you must first load the package containing the function you wish to
access, even if just accessing its help file.

To search all packages and functions that contain a particular word of interest in
their help file, e.g. search for "dir":
> help.search("dir")

To globally reset the current working directory from/to which input/output files
should be read/written during execution:
> setwd("S:\\data\\mydirectory")

To import a function that does not exist in a standard package: e.g.
"myfunction.r" located in some directory "user" into a program or R session:
> source("s:\\user\\myfunction.r");

To customize your default directories for library and package searches, copy the
contents of the TSA template file "S:\R\rw2001\etc\Rprofile" to your local
R installation copy: "C:\Program Files\R\rw2001\etc\Rprofile". The
".libPaths" setting in this file already specifies TSA's default package directories.
You can add more directories if you like. Furthermore, you can customize other
R settings in this file, e.g. you may want to redefine your local working directory
(see "setwd" command above), or, you can explicitly "source" R files containing
functions you commonly use. These will be imported each time you invoke R.

Summary of FAQs and Examples presented below

1. What's the best way of executing R code? Contributor: Frank Masci

2. How do I read in data (in columns x, y, z...) from a text file, perform a linear
regression between two quantities, create some plots, and write some
diagnostics to an output text file? Contributor: Frank Masci.

3. How do I read in time series from text files (e.g. in SEASABS format), store
them into time series objects, perform some operations (e.g. compute
movements), and quickly plot them? Contributor: Frank Masci.

4. How do I reformat/restructure and manipulate data in the form of matrices,
lists and vectors? Contributor: Nick von Sanden.

5. How do I......

Answers to FAQs and Example Code

1. What's the best way of executing R code?

To execute any of the example codes below, you can either:
copy and paste the code into the R GUI, ensuring the directory locations of 1.
all input files are correct.
better: place the code in a text file, e.g. "mycode.r" in a private directory: 2.
"s:\\user\\" and then execute:
source("s:\\user\\mycode.r");
if you're comfortable using DOS command prompts: place the code in a 3.
text file e.g. "mycode.r" in a private directory, then within that same
directory, execute on the DOS command prompt:
"S:\\R\\rw2001\\bin\\Rterm.exe" -q --no-restore --no-save <
mycode.r
If you want diagnostic outputs to be redirected to a log file, e.g. "
outlog.txt" then simply append "> outlog.txt" to this execution line.

2. How do I read in data (in columns x, y, z...) from a text file, perform a linear
regression between two quantities, create some plots, and write some
diagnostics to an output text file?

Lines starting with "#" are comments and are not executed.

The following line tells R not to echo each input line back to the
screen after it's executed:
options(echo = FALSE);

Import the package "MASS" since it contains the "rlm" function we
call below:
library(MASS);

Following line is optional: set the current working directory from/to
which input/output files will be read/written. Alternatively, can explicitly
prepend directory paths to file names specified below.
setwd("P:\\My Documents\\FrankMasci\\ExampleRcode");

#---

Read data from text file: "Time_mvts_abs.txt". You can also prepend
the directory path. This file contains five columns, which we call:
times, mvt1, mvt2, absmvt1, absmvt2. The "list" argument is used
to specify the datatypes: "" => string, 0 => floating point number:

xydata <- scan("Time_mvts_abs.txt", list("",0,0,0,0));

Assign variables to columns specified in input file:

times <- xydata[[1]]
x <- xydata[[2]];
y <- xydata[[3]];
absx <- xydata[[4]];
absy <- xydata[[5]];

#---
Perform robust linear regression using "rlm" function in the "MASS"
package. By "robust", we mean as outlier resistant as possible.
Here we regress "y" (column 3 in input file) against "x". Outputs
from the regression are then saved in separate parameters.
Note that we also define new variables from the regression output
such as t-vales and p-values. See the "R-help" entry on "rlm" for
more details.

lin <- rlm(y ~ x + 1, method="MM");
par <- coefficients(summary(lin));
intercept <- par[1,1];
slope <- par[2,1];
seint <- par[1,2];
seslope <- par[2,2];
tint <- abs((intercept - 0)/seint); ## i.e. test: H0: intercept=0
tslope <- abs((slope - 1)/seslope); ## i.e. test: H0: slope=1
pvalueint <- 2*pt(tint, (length(x)-2), lower.tail = FALSE);
pvalueslope <- 2*pt(tslope, (length(x)-2), lower.tail = FALSE);

#---
Write the values stored above to the file: "results.txt".
If you want to write this output directly to the screen, then
simply specify file="".

write(paste("\n SLOPE (OUTLIER RESISTENT) =",slope), file="results.txt", append=F);
write(paste(" STANDERROR_SLOPE =",seslope), file="results.txt", append=T);
write(paste(" T-VALUE_SLOPE =",tslope), file="results.txt", append=T);
write(paste(" P-VALUE_SLOPE (H0: slope=1) =",pvalueslope), file="results.txt", append=T);
write(paste(" INTERCEPT (OUTLIER RESISTENT) =",intercept), file="results.txt", append=T);
write(paste(" STANDERROR_INT =",seint), file="results.txt", append=T);
write(paste(" T-VALUE_INT =",tint), file="results.txt", append=T);
write(paste(" P-VALUE_INT (H0: intercept=0) =",pvalueint,"\n"), file="results.txt",
append=T);

#---
Create plot 1: simply column 3 versus column 2 of input file.
See the "R-help" entry on "plot" for the gory details on each argument.
This example also places a legend on the plot:

Define the output plotting device, here the plot is saved to a png file.
Note: png appears to be the best quality for our windows viewing devices:
png(file="mvt1_vs_mvt2.png", width=680, height=450, pointsize=12, bg="white", res=200);
Define the plotting frame:
plot(x, y, main="Movements at equal times", xlab="% movement in series 1", ylab="% movement
in series 2", pch=" ", cex.lab=1.3, cex.axis=1.2, cex.main=1.4)
Show the actual data:
points(x, y, col="red", pch=24, bg="red");
Add lines to this plot defined by (intercept, slope) arguments:
abline(0, 1, col="black");
abline(intercept, slope, col="blue", lty=2);

Place a legend on the plot. This example is pretty complete.
legend(15, -2, # coordinates of desired legend location.

 c("Real values","Linear fit","Line of equality"), # text labels in legend.
 col=c("red","blue","black"), # line colours.
 text.col="black", # text colour.
 lty=c(-1,2,1), # line styles: "-1" => ignore.
 lwd=c(-1,1,1), # line widths.
 pch=c(24, -1, -1), # symbol types of points.
 pt.bg=c("red","blue","black"), # backgound colours of points.
 merge=TRUE, # place points in middle of lines.
 bty='n'); # don't place a frame around legend.

close the output plotting device:

dev.off();

#---
Create plot 2: columns 2 and 3 versus column 1 (time) from input file.
This plot attempts to label the x-axis with actual time label strings
provided in our input file (column 1). These time labels are strings,
not numerical values and thus require special handling. If we simply
wanted to plot numerical values, see the default call to "plot" in the
previous example.

png(file="mvt_vs_time.png", width=680, height=450, pointsize=12, bg="white", res=200);
In the following, we have set "axes=FALSE" since these will be explicitly defined below:
plot(x, main="Movements versus time", xlab="Quarter / year", ylab="% movement", pch=" ",
frame=TRUE, axes=FALSE, cex.lab=1.3, cex.main=1.4);
Show the data as joined lines and show a point in red at the end of the series:
lines(x, col="blue",lty=1);
lines(y, col="green",lty=1);
points(length(x), y[length(y)], col="red", pch=16, cex=1.5);
Add a horizontal line [with intercept,slope = 0,0]:
abline(0, 0, col="black");
Show the axes with time lable strings. Note that the "9" in the following line
specifies the sampling interval separating the tick marks on the x-axis:
axis(1, seq(1,length(x),round((length(x)/9),0)),
labels=times[seq(1,length(x),round((length(x)/9),0))], las=1, cex.axis=1.2);
axis(2, cex.axis=1.3);

close the output plotting device:
dev.off();

#-------------------------END---------------------------------

Example Outputs:
The file "results.txt" looks like:
 SLOPE (OUTLIER RESISTENT) = 0.994422221122267
 STANDERROR_SLOPE = 0.0176829270360894
 T-VALUE_SLOPE = 0.315433008706611
 P-VALUE_SLOPE (H0: slope=1) = 0.752923623184282
 INTERCEPT (OUTLIER RESISTENT) = 0.094800704213533
 STANDERROR_INT = 0.121839528118300
 T-VALUE_INT = 0.778078392764999
 P-VALUE_INT (H0: intercept=0) = 0.437894477162239

Plot 1 looks like:

Plot 2 looks like:

3. How do I read in time series from text files (e.g. in SEASABS format), store
them into time series objects, perform some operations (e.g. compute
movements), and quickly plot them?

Lines starting with "#" are comments and are not executed.

The following line tells R not to echo each input line back to the
screen after it's executed:
options(echo = FALSE)

Following line is optional: set the current working directory from/to
which input/output files will be read/written. Alternatively, can explicitly
prepend directory paths to file names specified below.
setwd("P:\\My Documents\\FrankMasci\\ExampleRcode");

#--
Read in two series from text files. You can also prepend
the directory paths. Each file contains three columns:
"year", "period", "value" as generated by the SEASABS "Save.." option.

x1 <- scan("SA7_8GR.txt", list(0,0,0));
x2 <- scan("SA5_8GR.txt", list(0,0,0));

Assign variables to column 3 data from each input file:
data1 <- x1[[3]];
data2 <- x2[[3]];

#--
Store series data into time series objects for easier plotting and
manipulation.

startyear <- 1988; # the startyear in each series. Here it's the same for both.
startperiod <- 1; # the starting period (month or qtr) in each series.
freq <- 4; # 4 => quarterly, 12 => monthly
ts1 <- ts(data1, start=c(startyear, startperiod), frequency=freq);
ts2 <- ts(data2, start=c(startyear, startperiod), frequency=freq);

#--
Compute % movements in each time series:

mvt_ts1 <- 100*diff(ts1,1)/ts1[1:length(ts1)-1];
mvt_ts2 <- 100*diff(ts2,1)/ts2[1:length(ts2)-1];

#--
Plot both time series on the same panel. First set up output plotting device.
Here the plot is saved to a png file. Note: png appears to be the best quality
for our windows viewing devices:

png(file="plot_movements.png", width=680, height=450, pointsize=12, bg="white", res=200);

See the "R-help" entry on "ts.plot" for the gory details on each argument and more:
ts.plot(mvt_ts1, mvt_ts2, gpars=list(ylab=" % Movements", col=c(1:2)),
 main="Comparison b'twn X11 TMAs: TMA=7(black); TMA=5(red)");

close the output plotting device:
dev.off()

#----------------------------END------------------------------------

Example Output:

4. How do I reformat/restructure and manipulate data in the form of matrices,
lists and vectors?

#Assume we have data loaded
> tmp<-100:3
#Data may be in form of vector, matrix, or list and may contain numeric or character
information. This can be checked with #the mode() and is.numeric/is.character functions.

> mode(tmp)
[1] "numeric"
> is.vector(tmp)
[1] TRUE

#now change to matrix and check dimensions

> tmp3<-matrix(tmp,nrow=7)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 100 93 86 79 72 65 58 51 44 37 30 23 16 9
[2,] 99 92 85 78 71 64 57 50 43 36 29 22 15 8
[3,] 98 91 84 77 70 63 56 49 42 35 28 21 14 7
[4,] 97 90 83 76 69 62 55 48 41 34 27 20 13 6
[5,] 96 89 82 75 68 61 54 47 40 33 26 19 12 5
[6,] 95 88 81 74 67 60 53 46 39 32 25 18 11 4
[7,] 94 87 80 73 66 59 52 45 38 31 24 17 10 3

#this is equvialent to

>tmp2<-100:94
>for (i in 2:14) {
>tmp2<-cbind(tmp2,(100-(i-1)*7):(100-i*7+1))}
>tmp2

#which column binds vectors to produce the same final matrix with the following dimensions

> dim(tmp2)
[1] 7 14
> is.matrix(tmp2)
[1] TRUE

>
dimnames(tmp2)[[2]]<-c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec
","Tot","Mean")
>
dimnames(tmp2)[[1]]<-c("Person1","Person2","Person3","Person4","Person5","Person6","Person7",
)
>
> tmp2
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot Mean
Person1 100 93 86 79 72 65 58 51 44 37 30 23 16 9
Person2 99 92 85 78 71 64 57 50 43 36 29 22 15 8
Person3 98 91 84 77 70 63 56 49 42 35 28 21 14 7
Person4 97 90 83 76 69 62 55 48 41 34 27 20 13 6
Person5 96 89 82 75 68 61 54 47 40 33 26 19 12 5
Person6 95 88 81 74 67 60 53 46 39 32 25 18 11 4
Person7 94 87 80 73 66 59 52 45 38 31 24 17 10 3

#This then allows selection of rows and columns of the matrix either by name or by
column/row. To select by column or #row we use the square brackets [i,j] to select elements
in columns j and row i. Note that multiple rows/columns can be #selected simultaneously and
leaving an index out will result in select of all elements in that index. Ie

> tmp2[,3]
Person1 Person2 Person3 Person4 Person5 Person6 Person7
 86 85 84 83 82 81 80
> tmp2[3,]
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot Mean
 98 91 84 77 70 63 56 49 42 35 28 21 14 7
> tmp2[2,6]
[1] 64
> tmp2[3,]
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot Mean
 98 91 84 77 70 63 56 49 42 35 28 21 14 7
> tmp2[,11]
Person1 Person2 Person3 Person4 Person5 Person6 Person7
 30 29 28 27 26 25 24
> tmp2[c(1,3,7),]
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot Mean
Person1 100 93 86 79 72 65 58 51 44 37 30 23 16 9
Person3 98 91 84 77 70 63 56 49 42 35 28 21 14 7
Person7 94 87 80 73 66 59 52 45 38 31 24 17 10 3

#An alternative is to use logical operators. For example to choose all rows for which the
mean column is less than or equal #to 5 we could use

> tmp2[tmp2[,14]<=5,]
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot Mean
Person5 96 89 82 75 68 61 54 47 40 33 26 19 12 5
Person6 95 88 81 74 67 60 53 46 39 32 25 18 11 4
Person7 94 87 80 73 66 59 52 45 38 31 24 17 10 3

#Note that any characters or non-numeric elements in the matrix will result in the matrix
being non-numeric so that #operations may not be able to proceed.

tmp4<-tmp2
tmp4[3,3]<-"No information available here"
mode(tmp4)

[1] "character"

#We can then combine the above options to replace this element (and any others) and then use
the is.numeric() function to #force the matrix back to numeric. Note this will introduce NA
(not available) into elements which do not convert to numeric

tmp5<-as.numeric(tmp4)
tmp5[!is.na(tmp5)]

#Note that by these commands we have lost one observation - relating to the NA element and
also lost all information on #the dimensions of the matrix - ie converted back to a vector.

#The third most used data object type in R is a list. This is a combination of data objects
that can have any mode or type. #For example a list can contain matrices, vectors and scalars
with differing attributes (one element of the list may be a time #series) and modes (elements
do not all have to be numeric). They are therefore more flexible than data.frames.

#You can create a list with the list command

tmp6<-list(tmp2[,1],tmp2[,2],as.character(tmp2[,3]),tmp2[c(4,5,6),])

#the names() function can be used to check the elements of the list or change the names of

the elements in the list

names(tmp6)<-c("Element 1","Vector element","Character element","Matrix element")

#Elements in the list can then either be selected by name or by position in the list. Note
that lists use the double square #bracket to specifiy elements [[]]. Note also that the
element of a list may be either another list or a vector so square #brackets can be used
after the double square brackets to select an element of the matrix stored as an element in
the list. #For example

> tmp6$"Character element"
[1] "86" "85" "84" "83" "82" "81" "80"
> tmp6[[3]]
[1] "86" "85" "84" "83" "82" "81" "80"
> tmp6[[3]]==tmp6$"Character element"
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> tmp6[[4]][,3]
Person4 Person5 Person6
 83 82 81

5. How do I...

References

A very nice introduction to R, for novice and expert alike:!

A short course in R as taught in the Mathematics Department at ANU:!

Coupled with the above, the following 'reference card' is indispensible:!

For a list of time series specific functions:!

A very basic tutorial and refresher course on R and S-Plus commands:!

Also, don't forget the "Comprehensive R-Archive Network" (CRAN) website !

with links and FAQs contained therein:
http://cran.r-project.org/

Also, here's a website containing many tidbits and tricks of the trade (please !

keep this a secret, it's a good one!):
http://pj.freefaculty.org/R/Rtips.html#12.1

