
Hi John,

In case you're interested, I started with two normally-distributed random variables X,Y 
~ N(0,1) then applied the following transformation to generate new random variables 
U,V:

U = { |X+Y|, -|X+Y| }
V = {  X+Y,  -(X+Y) }

The notation here means that the vector formed by |X+Y| is joined with -|X+Y| to 
make a longer vector (= U) etc..

This transformation leads to marginalized normal distributions in each of U and V 
(also if projected onto each axis) and cov(U,V) = 0, i.e., they are uncorrelated. 
However U and V are dependent (see figure below). 

Therefore, this is any example where two variables (U,V) are not joint-normal, have 
covariance = 0 but are indeed dependent. It reinforces the fact that the covariance 
measure completely determines (in)dependency between variables if and only if they 
are joint-normally distributed.

As a side note, joint-normally distributed variables can only be linearly-dependent. 
That's because ellipses and ellipsoids are the 'norm' for multinormal distributions. This 
is what the covariance can ever measure for joint-normally distributed data. E.g., 
Pearson's product moment coefficient is sufficient for computing the correlation 
between normally distributed variables because it measures the degree of linear-
dependence only. For a more general measure of dependency between variables 
(e.g., related to high polynomial order), Spearman's rank correlation coefficient is the 
best choice.

Regards, Frank

Frank Masci <fmasci@ipac.caltech.edu>
example of uncorrelated but dependent
November 3, 2011 12:26 PM

 




