
Hi Mark,

I just wanted to clarify your claim yesterday that Pearson's linear correlation 
coefficient (ρ) = the slope (β) estimated from a linear least squares fit of y = β x 
+ α  on the same data.
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For two random variables  and , the linear correlation coefficient is defined:
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The slope derived using linear least squares (minimising MSE etc..) with  regressed on
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Two points are noteworthy:
1. Eqn (1) holds for any two random variables in general ( 0) and =0 =0 naturally as you claim.

2. However, if we transfor
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m the  and  data to z-scores so that they have zero mean and unit variance, ie:

 =  and = , then ( / ) 1 and we get:
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 when  and  are both computed from the new data 
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So it's important to note that when one has no knowledge of how two datasets 
are distributed, one cannot immediately claim that ρ = β. If the x, y data are 
related by a scale factor (eg. the price of diamonds versus the salaries of the 
people who mine them), then β subsumes this scale dependence and it's possible 
that | β | > 1. In this case, their standard deviations (or relative spreads) are 
needed to estimate ρ via eqn (1). With proper transformation of the data to 
z-scores, your claim is correct!

Cheers,
Frank


