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The impact of correlations on the optimum location measure and its variance for 
samples drawn from Gaussian populations 

 
F. Masci,  11/09/2011 

 
 
We explore the optimal location measure (or mean) µ and its variance vµ = σ2

µ for two and three random 
variables where correlations may be present between any data pairs, i.e., ρ12 ≠ 0, ρ23 ≠ 0, and/or ρ13 ≠ 0. 
Note: if ρij = 0 for all i, j where i ≠ j, we get the familiar: vµ = σ2/3 for N = 3. Why N ≤ 3? Because this is 
small and manageable enough for illustrating what happens in general. 
 
We make use of an error-covariance matrix ΩN for N random variables. If their population priors (σ2) are all 
the same, this can be conveniently written as a correlation matrix: 
 

ΩN =σ
2

1 ρ12 ρ13  ρ1N

ρ21 1 ρ23  ρ2N

ρ31 ρ32 1  ρ3N

    
ρN1 ρN 2 ρN 3  1
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The covariance or correlation matrix is always symmetric since ρij = ρji (or Ω = ΩT). Furthermore, for a 
covariance matrix to correspond to a physically plausible multivariate probability distribution for all variables 
jointly, it must be positive definite, i.e., 
 
XTΩNX > 0    ∀    real-valued vectors X ≠ 0.                                                              (2)  
 
Equivalently, since the inverse of a positive-definite matrix is also positive definite, it follows that 
 
χ 2 = XTΩN

−1X > 0    ∀    real-valued vectors X ≠ 0.                                                     (3)  
 
The conditions defined by Equation (2) or (3) are equivalent to ensuring that all eigenvalues of ΩN be non-
zero, positive, and real-valued. The eigenvalues represent the variances along the principal axes of the 
multivariate probability distribution in a diagonalized system of new random variables, i.e., with all 
correlations removed. These new variables are linear combinations of the initially correlated variables and the 
eigenvectors give the directions of the (orthogonal) principal axes. Geometrically, the error-ellipsoids 
(surfaces of equal density), or any vector of the N variables in the two systems are related by a N × N rotation 
matrix Q. This is commonly referred to as the eigendecomposition matrix since covariance matrices in the 
diagonalized and rotated (or correlated) system are related by: 
 
ΩN =QΩN

DQT .                                                                                                              (4)  
 
The determinant of ΩN (designated |ΩN|) is equal to the product of all its eigenvalues and is preserved under 
rotation. Incidentally, the volume of an error-ellipsoid is ∝√|ΩN| and hence, it is no surprise this measure is 
found in the general form of the multivariate Gaussian probability density function: 
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fN X( ) = e−χ
2 /2

2π( )N /2
ΩN

,                                                                                               (5)  

 
where χ2 is defined in Equation (3) with X = Xʹ′  – µXʹ′  for some real data vector Xʹ′ . 
 
A statement often encountered in the literature is that the condition for positive-definiteness (Eq. 2 or 3) is 
always satisfied if |ΩN| > 0. I have discovered this not to be true because a positive determinant hides the 
possibility that an even number of eigenvalues can be negative, rendering the covariance matrix unphysical. 
I.e., such a covariance matrix can never arise for real correlated variates in nature, unless of course one 
estimates the sample (co)variances (rather than using priors) and measurement error makes a specific 
covariance structure implausible. More commonly, the assignment of arbitrary correlation coefficients to 
generate test covariance matrixes will always require one to check for plausibility before use. I have only 
observed the occurrence of two negative eigenvalues starting with N = 4. None were found for N ≤ 3. A proof 
is in preparation. Therefore, |ΩN| > 0 alone is not a sufficient condition to ensure a positive definite covariance 
matrix. 

A necessary and sufficient condition for ΩN to be positive-definite is that all its eigenvalues be > 0. This 
automatically ensures |ΩN| > 0 and hence ΩN is non-singular. Instead of laboriously computing all the 
eigenvalues, the following check will ensure this, known as “Sylvester’s Criterion” (from 
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html): 

*** The definition of positive definiteness is equivalent to the requirement that the determinants associated 
with all upper-left submatrices are positive. 
 
 
Optimal measures of location and its noise-variance for Gaussian-distributed variables 
 
Appendix I gives a derivation of the optimal location estimate and its variance (in the maximum likelihood 
sense) for the combination of N correlated Gaussian-distributed variables, each drawn from either the same or 
different Gaussian population: 
 

µ̂ =

wijxi
j=1

N

∑
i=1

N

∑

wij
j=1

N

∑
i=1

N

∑
,                                                                                                           (6)

vµ = wij
j=1

N

∑
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N
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where wij ≡Ωij

−1,  i.e., the weights are the elements of the inverse covariance matrix in Equation (1). When 
correlations are absent, Equations (6) and (7) reduce to the more familiar inverse-variance weighted mean and 
variance expressions with the weights determined exclusively by the prior variances: wi ≡1/σ i

2.   
 
Furthermore, when correlations are absent and all measurements are drawn from the same Gaussian 
population with prior noise-variance σ2 (weights are all the same), the optimal location measure becomes the 
well known “arithmetic mean” µ = Σixi/N with uncertainty σµ = √vµ = σ/√N. 
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In general, if all N measurements have the same prior variance and the same non-zero correlations are present 
between all mutual variables (0 < |ρij | < 1), the optimal Gaussian location measure (Eq. 6) will not be 
affected. This has to do with the “ellipsoidal symmetry” of a multivariate Gaussian distribution and the fact 
that only linear correlations can be represented. As a side note, the following memo could be of interest: 
http://web.ipac.caltech.edu/staff/fmasci/home/statistics_refs/UncorrelatedButDependent2011.pdf 
If however the measurements have different prior variances σi

2 and/or correlations ρij, the weights in Eq. (6) 
will not cancel and the location measure will now depend on them (with the σi

2 becoming coupled to the ρij). 
For N = 2, the optimum location measure will always be independent of ρ (for equal prior variances) because 
only one such ρ exists (see example below). For N > 2, all the ρij need to be equal for the same rule to apply. 
 
 
Two correlated random variables 
 
For example, let’s explore the N = 2 case with ρ = ρ12 = ρ21 and a constant prior σ2. The covariance matrix 
and its inverse are given by: 
 

Ω2 =σ
2 1 ρ

ρ 1
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1
σ 2 1− ρ2( )

1 −ρ

−ρ 1
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With 

w11 = w22 =
1

σ 2 1− ρ2( )
,

w12 = w21 =
−ρ

σ 2 1− ρ2( )
,   

 

 
Equations (6) and (7) then give: 
 

µ̂ =
w11 +w12( ) x1 + w21 +w22( ) x2

w11 +w12 +w21 +w22

 =  
σ 2 1− ρ2( )"
#

$
%
−1

1− ρ( ) x1 + 1− ρ( ) x2
"# $%

σ 2 1− ρ2( )"
#

$
%
−1

2− 2ρ( )
 =  x1 + x2

2
.

vµ =
1

w11 +w12 +w21 +w22

 =  
Ω2

2σ 2 1− ρ( )
 =  

σ 4 1− ρ2( )
2σ 2 1− ρ( )

 =  σ
2

2
1+ ρ( ).

 

 
Therefore, when the measurements have the same prior variance σi

2, the optimal measure of location µ̂  
reduces to the arithmetic mean and correlations will not impact its value. This will also be true for all N > 2 
only if ρij = constant for all i ≠ j and the σi

2 are all equal. If the σi
2 are not all equal, then N = 2 gives: 
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µ̂ =
σ 2
2 − ρσ1σ 2( ) x1 + σ1

2 − ρσ1σ 2( ) x2
σ1
2 +σ 2

2 − 2ρσ1σ 2

,

vµ =
σ1
2σ 2

2 1− ρ2( )
σ1
2 +σ 2

2 − 2ρσ1σ 2

.

 

 
These reduce to the above expressions when σ1

2 = σ2
2.  

 
 
Three correlated random variables 
 
For the general case of unequal variances and non-zero correlations, N = 3 gives: 
 

µ̂ =

1− ρ23
2"# $%σ 2

2σ 3
2 − ρ12σ 3

2σ1σ 2 − ρ13σ 2
2σ1σ 3 + ρ12ρ23σ 2

2σ1σ 3  + ρ13ρ23σ 3
2σ1σ 2( ) x1 +

1− ρ13
2"# $%σ1

2σ 3
2 − ρ12σ 3

2σ1σ 2 − ρ23σ1
2σ 2σ 3 + ρ12ρ13σ1

2σ 2σ 3  + ρ13ρ23σ 3
2σ1σ 2( ) x2 +

1− ρ12
2"# $%σ1

2σ 2
2 − ρ13σ 2

2σ1σ 3 − ρ23σ1
2σ 2σ 3 + ρ12ρ13σ1

2σ 2σ 3  + ρ12ρ23σ 2
2σ1σ 3( ) x3
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2σ 2

2 1− ρ2
12( )+σ1

2σ 3
2 1− ρ2

13( )+σ 2
2σ 3

2 1− ρ2
23( )− 2σ1σ 2σ 3 ρ12 + ρ13 + ρ23( )+

2 ρ12ρ13σ1
2σ 2σ 3 + ρ12ρ23σ 2

2σ1σ 3 + ρ13ρ23σ 3
2σ1σ 2( )
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vµ =
σ1

2σ 2
2σ 3

2 1− ρ2
12 − ρ

2
13 − ρ

2
23 + 2ρ12ρ13ρ23( )

σ1
2σ 2

2 1− ρ2
12( )+σ1

2σ 3
2 1− ρ2

13( )+σ 2
2σ 3

2 1− ρ2
23( )− 2σ1σ 2σ 3 ρ12 + ρ13 + ρ23( )+

2 ρ12ρ13σ1
2σ 2σ 3 + ρ12ρ23σ 2

2σ1σ 3 + ρ13ρ23σ 3
2σ1σ 2( )
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If the N = 3 sample were drawn from the same Gaussian population with prior variance σ2, Equation (8) 
reduces to: 
 

vµ =σ
2 1− ρ2

12 − ρ
2
13 − ρ

2
23 + 2 ρ12ρ13ρ23

3− 2 ρ12 + ρ13 + ρ23( )+ 2 ρ12ρ13 + ρ12ρ23 + ρ13ρ23( )− ρ2
12 − ρ

2
13 − ρ

2
23

                  (9)  

 
We explored Eq. (9) in some detail by first selecting arbitrary values of ρij and then checking them for joint-
plausibility, i.e., such that they made Ω3 positive definite. This ensured 0 < vµ < σ2 and that Ω3 was a plausible 
covariance matrix for some multivariate normal distribution. We used Sylvester’s Criterion (see above) to 
derive the following constraint equations: 
 
1− ρ2

12 > 0   &                                                                                                             (10)
1− ρ2

12 − ρ
2
13 − ρ

2
23 + 2 ρ12ρ13ρ23 > 0                                                                              (11)

 

 
The first equation implies |ρ12| < 1 and is enforced by requiring |ρ12| < 0.99. This specific upper bound was 
chosen to minimize precision and round-off error in general for all ρij (i ≠ j). Therefore, we are left with the 
constraint in Eq. (11): 
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ρ2

12 + ρ
2
13 + ρ

2
23 <1+ 2 ρ12ρ13ρ23.                                                                                   (12)  

 
Below we show plots of Equation (9) for five different fixed values of ρ13 and assuming a constant prior of σ2  

= 1. Two orientations are shown for each ρ13. The dependency of vµ on the size of the correlations can differ 
considerably. Qualitatively, if all three data pairs (or at least two depending on their ρij) are positively 
correlated (ρij > 0), then in general vµ > σ2/3, i.e., more than that expected if all correlations were zero. If all 
(or at least two depending on their ρij) are anti-correlated (ρij < 0), then in general vµ < σ2/3. Regions with no 
data are forbidden, i.e., these do not satisfy Equations (10) and (11).  
 
In closing, what happens if we relax the requirement of a positive-definite Ω3, i.e., that all three eigenvalues 
be > 0? If one or more eigenvalues are negative, this implies negative variances in the diagonalized 
(uncorrelated) system of variables, and complex numbers are needed to explain them. According to Eq. (9) 
however, it is still possible for the variance in the mean of a set of random variables to be positive. This raises 
the question: can the negative eigenvalue solutions (in the uncorrelated system) be tossed and only the 
positive ones retained to define a new vector space of plausible variables? This subset can then be combined 
to compute real-valued means and higher-order moments. This sounds like an artificial procedure, but all it 
means is that joint-normality is now only possible for a reduced set of the variables. These new variables are 
linear combinations of the initial variables (or physical observables) that had a “bad” (implausible) covariance 
matrix, but they can still be used for analyzing the principal components of variation. 
 
 
ρ13 = 0 

  
 
ρ13 = 0.5 
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ρ13 = 0.9 

  
 
ρ13 = -0.5 

  
 
 
ρ13 = -0.9 
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Appendix I: the optimal measure of location and its noise-variance for a correlated sample of 
Gaussian-distributed variables 
 
Here we present a maximum-likelihood estimate for the location and its variance for a set of random variables 
that may be correlated with each other and drawn from different Gaussian populations. By ‘maximum-
likelihood’, we mean finding the location of some global probability density function that maximizes the 
chance of obtaining the observed sample (or realization of variables). In the absence of correlations and with 
variables drawn from the same population, the optimal location measure is simply the arithmetic mean of the 
sample (Σixi/N). Its uncertainty (square root of the variance) is then the constant population σ (or an estimate 
of it using the sample standard deviation) divided by √N. A sample containing mutual correlations and with 
each variable drawn from different prior populations presents the most general case. 
 
We start with the general matrix form of the χ2 as defined by Equation (3) with X replaced by X – µX for some 
real column vector X of variables xi = x1, x2, x3, … xN : 
 
χ 2 = X −µX( )T ΩN

−1 X −µX( )                                                                                (A1)  
 
We make the vector substitution: 
 
Z = X −µX

⇒ χ 2 = ZTΩN
−1Z                                                                                                   (A2)

 

 
The value of µX (= µ̂ ) that maximizes the Gaussian likelihood (Eq. 5) or equivalently minimizes χ2, is that 
where the derivative of χ2 with respect to µX vanishes: 
 
∂χ 2

∂µX

=
∂χ 2

∂Z
∂Z
∂µX

= 0.                                                                                            (A3)  

 
We make use of a powerful identity from matrix calculus to obtain: 
 

∂χ 2

∂Z
=
∂ ZTΩN

−1Z( )
∂Z

      = ZTΩN
−1 + ZT ΩN

−1( )
T

      = 2ZTΩN
−1,                                                                                                     (A4)

since if ΩN  is symmetric (ΩN =ΩN
T ), its inverse is also symmetric: ΩN

−1 = ΩN
T( )

−1
= ΩN

−1( )
T
.

 

 
The ∂Z /∂µX  derivative in Eq. (A3) is simply an N × 1 column vector of -1’s: 
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∂Z
∂µX

=
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= −

1,                                                                                             (A5)  

 
where the new vector 


1  represents an N × 1 column vector with all elements equal to 1. 

 
Using Equations (A4) and (A5) in (A3), the condition for a vanishing derivative becomes: 
 
−2ZTΩN

−11 = 0

⇒ X − µ̂( )T ΩN
−11 = 0

⇒ XTΩN
−11 = µ̂


1TΩN

−11

⇒ µ̂ =
XTΩN

−11
1TΩN

−11
.                                                                                                   (A6)

 

 
To simplify the matrix equation in (A6), we define the inverse of the covariance matrix as WN: 
 

WN =ΩN
−1 =

w11 w12 w13  w1N

w21 w22 w23  w2N

w31 w32 w33  w3N

    
wN1 wN 2 wN 3  wNN
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                                                            (A7)  

 
If one uses WN from (A7) in (A6) and attempts to multiply-out the matrices, one finds that: 
 

µ̂ =

wijxi
j=1

N

∑
i=1

N

∑

wij
j=1

N

∑
i=1

N

∑
.                                                                                                   (A8)  

Now we derive the variance in the location estimate given by (A8), or equivalently (A6). We start with (A6) 
and rewrite it in terms of a true vector t = (t1  t2   t3 … tN)T + error vector ε  =  (ε1  ε2   ε3 … εN)T: 
 

tµ +εµ =
1
D

t +ε( )T ΩN
−11.                                                                                      (A9)

where

D =

1TΩN

−11 = wij
j=1

N

∑
i=1

N

∑
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Equation (A9) can be written: 
 

tµ +εµ =
1
D

tTΩN
−11+εTΩN

−11( ).                                                                                  (A10)

squaring both sides of (A10) and taking expectation values:

tµ +εµ( )
2
=

1
D2 tTΩN

−11+εTΩN
−11( )

2

⇒ tµ
2 + 2εµtµ +εµ

2 =
1
D2 tTΩN

−11( )
2
+ 2 εTΩN

−11( ) tTΩN
−11( )+ εTΩN

−11( ) εTΩN
−11( )

⇒ tµ
2 + 2 εµtµ + εµ

2 =
1
D2 tTΩN

−11( )
2
+

2
D2


1TΩN

−1 εtT ΩN
−11+ 1

D2 εTΩN
−11εTΩN

−11 ,

where for the middle product on the right, we made the replacement: εTΩN
−11 =


1TΩN

−1ε.

Given εµtµ = 0 and εtT = 0,  we make the following associations:

tµ
2 =

1
D2 tTΩN

−11( )
2

,

εµ
2 =

1
D2 εTΩN

−11εTΩN
−11 .

With the replacement εTΩN
−11 =


1TΩN

−1ε,

εµ
2 =

1
D2


1TΩN

−1εεTΩN
−11 .

Identifying εεT =ΩN ,  we have:

εµ
2 =

1
D2


1TΩN

−11 =
D
D2 =

1
D

                                                                                 (A11)

using the definition of D below Equation (A9).

 

 
Therefore, the corresponding variance for the optimum location measure is given by: 
 

vµ =σ µ
2 = wij

j=1

N

∑
i=1

N

∑
"

#
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&
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−1

                                                                                              (A12)  

 
Note: prior to the author discovering the above matrix derivation, he started with Equation (A8), expressed 
the xi in terms of ‘truth’ + εi , squared the terms and took expectation values, and arrived at: 

vµ =
1
D2 wij

j=1

N

∑
"

#
$
$

%

&
'
'

2

σ i
2 + 2 ρmnσ mσ nwmiwnj

j

N

∑
i

N

∑
n<m

N

∑
m=1

N

∑
i=1

N

∑
(
)
*

+*

,
-
*

.*
.                                         (A13)  

Equation (A13) will give results numerically equivalent to Equation (A12). Take your pick! I prefer (A12). 


