PTFIDE: PTF Image Differencing & Extraction

Frank Masci & the iPTF Collaboration

iPTF workshop, August 2013

Goals

- Yet another difference-imaging pipeline! To support real-time transient discovery at Caltech.
- Flexibility: robust to instrumental artifacts, bad astrometry, adaptable to all seeing, little tuning.
- Operate in a **range of environments:** high source density, complex backgrounds and emission.
- Generic: discover transients of all types: pulsating & eruptive variables, SNe, asteroids.
- Maximize reliability of candidates and photometric accuracy to streamline vetting process.
- **Preprocessing steps:** "relative" calibration of input images crucial for good difference-imaging.
- Now in the operations environment at IPAC/Caltech to support archival research requests
 - \succ currently supporting the moving object pipeline to discover asteroids.

PTFIDE processing flow

http://web.ipac.caltech.edu/staff/fmasci/home/miscscience/ptfide-v4.0.pdf

PSF-matching

• An observed image (exposure) can be modeled as:

$$I_{ij} = \left[K_{lm} \otimes R_{ij}\right] + dB + \varepsilon_{ij}$$

• PSF-matching entails finding an optimum convolution kernel *K* by minimizing some cost function:

$$C = \sum_{i,j} \left[I_{ij} - \left(K_{lm} \otimes R_{ij} \right) - dB \right]^2$$

- Traditional method: decompose K into a sum of Gaussian basis functions \times by polynomials (e.g., Alard 2000) as implemented in *HOTPANTS*, *ISIS* software. Coefficients are then fit for.
 - User must specify number of basis functions, Gaussian widths, polynomial orders, including spatial orders.
 - ➢ No rules of thumb to ensure optimality for all images. Hard to tune for a survey − at least for PTF!
- Instead we solve for each of the kernel pixel values K_{lm} (= 7 × 7 parameters) directly via LLS.
 - Similar to Bramich (2008); more flexible, K can take on more general shape, compensate for bad astrometry.
 - Since PSF is spatially dependent, we grid images into 5×10 overlapping squares, then solve for K in each.

Advantages of PSF-fitting for transient photometry

- PSF fitting: better photometric accuracy for moderate to faint fluxes.
- Provides diagnostics to distinguish point sources from glitches (false-positives) in diff. images.
- Maximizes reliability of difference-image extractions since "static" transients are point sources.
- Assumes accurate PSF-estimation (over chip) and image registration prior to differencing.

Performance: real vs. bogus (reliability)

- took ~350 real, moderately dense *R*-band frames, derived spatially-varying PSFs, then simulated point source transients with random positions and fluxes.
- executed PTFIDE to create diff images and extract candidates with **fixed** threshold (S/N = 4) and filter params.

Performance of PSF-fit (AC) photometry

- took ~350 real, moderately dense *R*-band frames, derived spatially-varying PSFs, then simulated point source transients with random positions and fluxes.
- then executed PTFIDE to create diff images and extract candidates.
- difference image (AC) fluxes consistent with truth.

Comparison to transients discovered with LBNL pipeline

- Courtesy: Alexandra Cong California Institute of Technology
 Umaa Rebbapragada Jet Propulsion Laboratory, California Institute of Technology
- Executed PTFIDE on archival data containing 1549 *R*-band transients discovered: Apr 2009 Feb 2012.
- Recovered 1182 objects within 3" of LBNL position; 333 not extracted but do appear in diff images; 34 failed.
- A large fraction of LBNL positions provided to us are not on the actual transient! Analysis needs to be redone.

LBNL centroids appear to be from science images => subject to contamination / blending

A portion of the research described in this presentation was carried out at the Jet Propulsion Laboratory under a Research and Technology Development Grant, under contract with the National Aeronautics and Space Administration. Copyright 2013 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.

Comparison to transients discovered with LBNL pipeline

Photometry comparison: PSF-fit photometry from PTFIDE vs Kron-like aperture photometry (MAG_AUTO) with SExtractor from LBNL:

From difference-images to light curves

- Difference image photometry and candidate catalogs tied to reference image zero point.
 - derived by gain-matching input frame ZPs initially derived by matching Kron-like aperture phot. to SDSS.
 - > calibration infrastructure based on PSF-fit photometry is not yet in place.
- Recall PTFIDE uses a fixed detection threshold $(S/N \sim 4)$ to aid discovery.
- Light curve generation on candidates of interest: use forced PSF-photometry at fixed sky position through stack of difference images with no threshold.
 - > enables unbiased measurements down to low S/N; tighter upper limits or better S/N by combining data.
 - implemented as a new pipeline in operations environment.
 - > $DC_MAG = 27.0 2.5log_{10}[DC_flux]$ where $DC_flux = "AC_flux + RefImg_flux" > N$ -sigma.

SN 2011dh (PTF11eon) in Messier 51

SN 2011dh *R*-band light-curve from windowed-averaging

- Combine measurements within windows to improve S/N or obtain tighter upper limits on non-detections.
 - faster than co-adding images!
- Assumption: fluxes in a window ~ constant with time.
 - > or can collapse using more complex model based on prior (slope fit)

SN 2010mc (PTF10tel)

Future improvements for PTFIDE

Mostly make PSF-matching more robust:

• Image partitions with complex/extended emission can result in bad diff-img residuals (bad gain matching?): borrow kernel solutions from "good" neighboring partitions or interpolate.

M31 bulge: BAD difference

M31 bulge: good difference (?)

• Instead of using linear-least squares to estimate PSF-matching kernel *K*, minimize L1-norm:

$$C = \sum_{i,j} \left| I_{ij} - \left(K_{lm} \otimes R_{ij} \right) - dB \right| \implies \text{more robust against outliers}$$

• Regularization tricks to obtain smoother kernel solutions in crowded/noisy image regions (e.g., Becker et al. 2012). Penalize fits that give a high variance for *K* (high second derivative):

$$C = \sum_{i,j} \left[I_{ij} - \left(K_{lm} \otimes R_{ij} \right) - dB \right]^2 + \lambda \nabla^2 K_{lm}$$

Summary

- A new discovery engine (PTFIDE) is currently in production to support archival research.
 > with forced photometry (post-processing) pipeline for candidates of interest.
- Vetting (real-bogus) infrastructure not yet in place. Validation and testing continues.
- Good image calibration, reference image quality, flexible PSF-matching are key to obtaining good difference images.
- What matters in the end is the <u>content</u> of the candidate extraction catalogs:
 - use of PSF-fit photometry and associated diagnostics crucial to minimize false positives
 - > even if a difference image is not perfect (within random noise), can still proceed

Back up slides

Performance: completeness

- took ~350 real, moderately dense *R*-band frames, derived spatially-varying PSFs, then simulated point source transients with random positions and fluxes.
- executed PTFIDE to create diff images and extract candidates with **fixed** threshold (S/N = 4) and filter params.

Performance: #extractions vs "truth"

- took ~350 real, moderately dense *R*-band frames, derived spatially-varying PSFs, then simulated point source transients with random positions and fluxes.
- executed PTFIDE to create diff images and extract candidates with **fixed** threshold (S/N = 4) and filter params.

PSF-fit vs SExtractor aperture photometry

- Comparison below is a single science exposure image.
- SExtractor photometry is based on a fixed (relatively large) 7 pixel radius aperture .
- Galaxies filtered; only point sources are compared.

3156 matches [ptffield 4138, ccd 11, R]

SN 2011dh light curves from PTF difference image photometry

triangles: non-detections shown as 3.5σ upper limits

SN 2011dh g-band light-curve from windowed-averaging

- Combine measurements within windows to improve S/N or obtain tighter upper limits on non-detections. Faster than coadding images!
- Assumption: fluxes in a window ~ constant with time. Can also collapse using more complex model based on prior (slope fit)
- Reveal any "burst" behavior not seen in lower S/N exposures

SN PTF10xfh

SN PTF13ai (or PSN J12541585+0926259)

- Type Ia Supernova in galaxy PGC 43884 (~197 Mpc); discovered Feb 5, 2013
- One of the first to be discovered for iPTF

