Reference Image Reanalysis

Frank Masci

August 26, 2019

Motivation

- There was a push early in the survey to generate reference images for as much of the sky as possible in order to commence alert generation.
- Reference image usage:
 - \blacktriangleright Image subtraction \rightarrow alert production, asteroid detection.
 - Accompanying source catalogs provide "seed positions" for generating lightcurves.
- Procedure to this day:
 - Execute reference image "checker" pipeline every morning.
 - Checks which fields / CCD-quadrants / filters are missing references.
 - As soon as $N \ge 15$ science images satisfy quality criteria, generate a reference image.
 - Archive and lock-down the reference image; never revisit. Max cutoff is 40 input images.
- Now that we have a lot more epochal data, it's worth revisiting whether we can improve reference image quality by being more restrictive on the input image selection criteria.
- Reference image quality impacts all science programs.

Reference Image Coverage: Aug 23, 2019 galactic projection (l, b = 0, 0 centered)

Current reference image depths

Where are those "low-depth" reference images located?

- Shown are CCD-quadrant "footprints" mapped into galactic coordinate system.
- Only those with limiting magnitudes < 21.2 mag are shown (388 references).
- Colors refer to overlaps which include effects from resampling onto a coarser grid.

Example of a reference image near galactic center (this is a zoom!)

Example of a bad quality reference and its impact

Same reference image using cleaner (*flatter*) input science images

spatial variation in mag residuals: PS1 – ZTF_g

Robust spatial RMS in dMag = PS1 – ZTF [mag]

For each ref image, computed: $\Delta = max \{dMag\} - min \{dMag\}$ where $\{dMag\} = median(PS1 - ZTF_{mag})$ in 3×3 spatial bins over each image and

Robust global *RMS* in dMag for all sources with $13.5 \le mag \le 18.5$.

- Total number in g: 50,932
- Number suspect : 6,574
- Percentage suspect : $\sim 12.9\%$
- Could be lower since metrics are dependent on confusion level and effective mag range used.

Suspect reference images in *r*

spatial variation in mag residuals: PS1 - ZTF_r

- Total number in r : 57,837
- Number suspect : 7,621
- Percentage suspect : $\sim 13.2\%$
- Could be lower since metrics are dependent on confusion level and effective mag range used.

Robust spatial RMS in dMag = PS1 – ZTF [mag]

Suspect reference images in *i*

Robust spatial RMS in dMag = PS1 – ZTF [mag]

- Total number in *i* : 13,631
- Number suspect : 1,734
- Percentage suspect : $\sim 12.7\%$
- Could be lower since metrics are dependent on confusion level and effective mag range used.

Plan: extend selection criteria for science image inputs

Setting "throughput-flatness" thresholds *for science images*

- Used same metrics as before (slide 9: Δ versus *rms*) but this time compute for a random sample of science images.
- Goal: explore impact on reference image statistics if impose a flatness criterion when selecting input images.

- Provisional (experimental) thresholds to select usable science images for reference image generation:
 - $g: rms \le 0.035; \Delta_{minmax} \le 0.047$
 - *r* : *rms* \leq 0.030; $\Delta_{minmax} \leq$ 0.045
 - $i: rms \le 0.030; \quad \Delta_{minmax} \le 0.045$
- In reality, I expect these thresholds to be field dependent (e.g., high source confusion will impact metrics).

Reference image statistics in g using new criterion

- **Red histogram:** what we have now in archive
- Blue histogram: what we'll get if all references were to be regenerated with *flatness* criterion included

g-filter:
Nrefsnow (Nmin=15; Nmax=40) : 50,932
Nrefsnew (Nmin=15; Nmax=50) : 35,297; %lost ~ 30.7%
Nrefsnew (Nmin=10; Nmax=50) : 41,680; %lost ~ 18.2%

Reference image statistics in r using new criterion

- **Red histogram:** what we have now in archive
- Blue histogram: what we'll get if all references were to be regenerated with *flatness* criterion included

<i>r</i> -filter:
Nrefsnow (Nmin=15; Nmax=40) : 57,837
Nrefsnew (Nmin=15; Nmax=50) : 46,516; %lost ~ 19.6%
Nrefsnew (Nmin=10; Nmax=50) : 52,217; %lost ~ 9.7%

Reference image statistics in *i* using new criterion

- **Red histogram:** what we have now in archive
- Blue histogram: what we'll get if all references were to be regenerated with *flatness* criterion included

<i>i</i> -filter:	
Nrefsnow (Nmin=15; Nmax=40) : 13,631	
Nrefsnew (Nmin=15; Nmax=50) : 6,420;	$\% lost \sim 52.9\%$
Nrefsnew (Nmin=10; Nmax=50) : 10,149;	$\% lost \sim 25.5\%$

Consequences of regenerating (ones I know about)

- There will be losses in reference-image sky coverage if *flatness* criterion is included.
 - can retune/relax other input filters to minimize losses.
- Lightcurves derived from differential photometry in alert packets will change depending on input timespans and level of contamination from inadvertent inclusion of real transient signal in ref image.
 - ➤ lost/irrecoverable alerts, particularly near thresholds.
 - changes in the positions of already published alerts, not only photometry.
- Source positions in reference image catalogs will change used to seed source-matching across epochs for generating lightcurves (*source matchfile* products, **not** subtraction image photometry).
 - breaks the "appending model" when updating lightcurves at Cahill. Need to re-match (do once) and re-assign new objectIDs in databases.
 - lost sources in reference image by virtue of *"transient behavior"* over time (not reoccurring variables) => lost lightcurves.
- Changes in reference image quality => retraining of machine-learned classifiers for point-source transients and streaks (asteroids) detected in subtraction images. Difficult to quantify.

Moving Forward

Goal: maximize reference image quality but also minimize loss in sky coverage.

Possible direction:

- 1. Retune input science image selection criteria (explore field dependencies / source confusion).
- 2. Identify & regenerate suspect references ($\sim 13\%$ per filter): Nmin = 15, Nmax = 50 images deep.
 - ▶ if have N < 15 images, flag existing reference in archive as "potentially updatable" : check these daily as survey proceeds and regenerate as soon as $N \ge 15$.
- 3. Regenerate <u>non-suspect</u> references only if new selection criteria yield deeper references.

Special case:

- *i*-filter makes sense to deploy fringe corrector; reprocess all science images and re-archive; then regenerate all reference images using new criteria.
 - ▶ we can indeed support reprocessing of all *i*-filter image data at this time.
- "Re-baselining" the survey to a new reference image library makes sense in the long term due to intermittent updates to the observing system and calibrations:
 - camera/cryostat cleansing; new CCD waveforms; new electronic gains/linearity curves; focalplane leveling; DIQ refinements from flexure correction model updates, ...