ZTF Science Data System: Progress & Plans

Frank Masci & the IPAC/Caltech ZTF Team

September 3, 2019

Outline

- Updates
- Reference image reanalysis
- Second Public Data Release
- Photometric corrections (in context of *lightcurve matchfiles*)
- Miscellaneous / planned tasks
- ZTF Phase II

Some updates

- First public data release occurred on May 8, 2019. Much feedback received from community & partnership.
- Continued refinements to forced photometry service from feedback received.
- Transitioned from PostgreSQL to SQLite database for querying PS1 sources and matching to alerts.
- Set up data system to handle new northern equatorial polar fields (to reduce that infamous 20° hole).
- Improved archive "retry logic" to mitigate archive failures in realtime (network related).
- Computation of new *Deep Real-Bogus* (*drb*) metric for point source transients and inclusion in alert packets.
- Routine (monthly) generation of lightcurve tarballs from TESS sector observations.
- Reformatting of (newly appended) *matchfile* contents into ancillary text files to support ingestion into kowalski.
- Characterizing systematics in epochal PSF-fit photometry with respect to PS1 (spearheaded by Andrew Drake).
 - > Developed infrastructure to apply photometric corrections to lightcurves (*matchfile* pipeline).
- Reanalysis of overall reference image quality with impact study.

Reference Image Analysis

- There was a push early in the survey to generate reference images for as much of the sky as possible in order to commence alert generation.
- Reference image usage:
 - \blacktriangleright Image subtraction \rightarrow alert production, asteroid detection.
 - Accompanying source catalogs provide "seed positions" for generating lightcurves.
- Procedure to this day:
 - Execute reference image "checker" pipeline every morning.
 - Checks which fields / CCD-quadrants / filters are missing references.
 - As soon as $N \ge 15$ science images satisfy quality criteria, generate a reference image.
 - Archive and lock-down the reference image; never revisit. Max cutoff is 40 input images.
- Now that we have a lot more epochal data, it's worth revisiting whether we can improve reference image quality by being more restrictive on the input image selection criteria.
- Reference image quality impacts all science programs.

Reference Image Coverage: Aug 23, 2019 galactic projection (l, b = 0, 0 centered)

Current reference image depths

Where are those "low-depth" reference images located?

- Shown are CCD-quadrant "footprints" mapped into galactic coordinate system.
- Only those with limiting magnitudes < 21.2 mag are shown (388 references).
- Colors refer to overlaps which include effects from resampling onto a coarser grid.

Example of a reference image near galactic center (this is a zoom!)

Example of a bad quality reference and its impact

Same reference image using cleaner (*flatter*) input science images

spatial variation in mag residuals: PS1 – ZTF_g

Robust spatial RMS in dMag = PS1 – ZTF [mag]

For each ref image, computed: $\Delta = max \{dMag\} - min \{dMag\}$ where

 ${dMag} = median(PS1 - ZTF_{mag})$ in 3 × 3 spatial bins over each image and

Robust global *RMS* in dMag for all sources with $13.5 \le mag \le 18.5$.

- Total number in g: 50,932
- Number suspect : 6,574
- Percentage suspect : $\sim 12.9\%$
- Could be lower since metrics are dependent on confusion level and effective mag range used.

Suspect reference images in *r*

spatial variation in mag residuals: PS1 - ZTF_r

- Total number in *r* : 57,837
- Number suspect : 7,621
- Percentage suspect : $\sim 13.2\%$
- Could be lower since metrics are dependent on confusion level and effective mag range used.

Robust spatial RMS in dMag = PS1 – ZTF [mag]

Suspect reference images in *i*

Robust spatial RMS in dMag = PS1 – ZTF [mag]

- Total number in *i* : 13,631
- Number suspect : 1,734
- Percentage suspect : $\sim 12.7\%$
- Could be lower since metrics are dependent on confusion level and effective mag range used.

Plan: extend selection criteria for science image inputs

Setting "throughput-flatness" thresholds *for science images*

- Used same metrics as before (slide 11: Δ versus *rms*) but this time compute for a random sample of science images.
- Goal: explore impact on reference image statistics if impose a flatness criterion when selecting input images.

- Provisional (experimental) thresholds to select usable science images for reference image generation:
 - $g: rms \le 0.035; \Delta_{minmax} \le 0.047$
 - \boldsymbol{r} : $rms \leq 0.030; \quad \Delta_{minmax} \leq 0.045$
 - $i: rms \le 0.030; \quad \Delta_{minmax} \le 0.045$
- In reality, I expect these thresholds to be field dependent (e.g., high source confusion will impact metrics).

Reference image statistics in g using new criterion

- **Red histogram:** what we have now in archive
- Blue histogram: what we'll get if all references were to be regenerated with *flatness* criterion included

g-filter:
Nrefsnow (Nmin=15; Nmax=40) : 50,932
Nrefsnew (Nmin=15; Nmax=50) : 35,297; %lost ~ 30.7%
Nrefsnew (Nmin=10; Nmax=50) : 41,680; %lost ~ 18.2%

Reference image statistics in r using new criterion

- **Red histogram:** what we have now in archive
- Blue histogram: what we'll get if all references were to be regenerated with *flatness* criterion included

<i>r</i> -filter:
Nrefsnow (Nmin=15; Nmax=40) : 57,837
Nrefsnew (Nmin=15; Nmax=50) : 46,516; %lost ~ 19.6%
Nrefsnew (Nmin=10; Nmax=50) : 52,217; %lost ~ 9.7%

Reference image statistics in *i* using new criterion

- **Red histogram:** what we have now in archive
- Blue histogram: what we'll get if all references were to be regenerated with *flatness* criterion included

<i>i</i> -filter:	
Nrefsnow (Nmin=15; Nmax=40) : 13,631	
Nrefsnew (Nmin=15; Nmax=50) : 6,420;	$\% lost \sim 52.9\%$
Nrefsnew (Nmin=10; Nmax=50) : 10,149;	$\% lost \sim 25.5\%$

Consequences of regenerating references

- There will be losses in reference-image sky coverage if *flatness* criterion is included.
 - can retune/relax other input filters to minimize losses.
- Lightcurves derived from differential photometry in alert packets will change depending on input timespans and level of contamination from inadvertent inclusion of real transient signal in ref image.
 - ➤ lost/irrecoverable alerts, particularly near thresholds.
 - changes in the positions of already published alerts, not only photometry.
- Source positions in reference image catalogs will change used to seed source-matching across epochs for generating lightcurves (*source matchfile* products, **not** subtraction image photometry).
 - breaks the "appending model" when updating lightcurves at Cahill. Need to re-match (do once) and re-assign new objectIDs in databases.
 - Iost sources in reference image by virtue of "transient behavior" over time (not reoccurring variables) => lost lightcurves.
- Changes in reference image quality => retraining of machine-learned classifiers for point-source transients and streaks (asteroids) detected in subtraction images. Difficult to quantify.

Regenerating references: moving forward

Goal: maximize reference image quality but also minimize loss in sky coverage.

Possible direction:

- 1. Retune input science image selection criteria (explore field dependencies / source confusion).
- 2. Identify & regenerate suspect references (< 13% per filter) with Nmin = 15, Nmax = 50 images deep
 - ▶ if have N < 15 images, flag existing reference in archive as "potentially updatable" check these daily as survey proceeds and regenerate as soon as $N \ge 15$.
- 3. Regenerate <u>non-suspect</u> references only if new selection criteria yield deeper references.

Special case:

- *i*-filter makes sense to deploy fringe corrector; reprocess all science images and re-archive; then regenerate all reference images using new criteria.
 - ➤ we can indeed support reprocessing of all *i*-filter image data at this time.
- "Re-baselining" the survey to a new reference image library makes sense in the long term due to intermittent updates to the observing system and calibrations:
 - camera/cryostat cleansing; new CCD waveforms; new electronic gains/linearity curves; focalplane leveling; DIQ refinements from flexure correction model updates, ...

Second Public Data Release

• DR2 is scheduled for December 11, 2019.

• Content (adds onto DR1):

- > program ID 1 (MSIP) epochs: Jan 1 Jun 30, 2019 (g and r)
- program IDs 2 & 3 (partnership and Caltech-time) epochs: Mar 17 Jun 30, 2018 (g, r, and i)

• Release products (same as DR1):

- ➢ raw CCD image files & calibration image files.
- > epochal instrumentally calibrated science images, file-based catalogs, and ancillary products
- ▶ reference images, accompanying file-based catalogs, and ancillary products
- > object source database (reference-image drawn) to facilitate lightcurve queries
- ▶ lightcurves derived from matched epochal PSF-fit photometry including tarballs for bulk download.

• Improvements:

- > new columns for lightcurve DB: *nobsrel*, *ngoodobsrel* (#epochs covering DR1 + DR2 only; not everything).
- > refinements to *catflags* (quality flags) column (inclusion of masked-pixel information).
- corrections to (*matchfile*) lightcurve photometry (see next slide).

Corrections to epochal PSF-fit photometry

- Systematics characterized by Andrew Drake (*http://nesssi.cacr.caltech.edu/ZTF/Web/Calib.html*):
 - 1. magnitude-dependent biases relative to PS1: < 1.3% for *g*, *r* < 17.5.
 - 2. biases from position-dependent responsivity (flatfield) residuals: $\pm 3\%$ (max at edges) \Leftarrow
 - 3. global field-dependent biases (sky-location dependent): $<\sim 0.5\%$
- Net result: RMS in residuals relative to PS1 now typically <~ 7 millimag.

Miscellaneous: in progress & TBD

- Preparations for Second Public Data Release.
- **TBD:** continued reference image quality analysis with possible regeneration of a subset.
- **TBD:** deployment of *i*-filter fringe correction and reprocessing of all *i*-filter data, including references.
- New "Kafka topic" to identify ProgramID=3 alerts in TESS footprints for distribution to UW & public brokers.
- Moving-object (SSO) pipeline updates to support twilight survey and more efficient scanning of tracklets.
- Update naming of SSOs from pipeline to conform to MPC's new extended packed-naming format.
- Continue to support generation of lightcurve tarballs for TESS sector observations (every month).
- Support ingestion of lightcurve matchfile contents into kowalski use an "appending model" approach.
- **TBD:** "backfilling" of subtraction images in archive due to late creation of references (currently done ad-hoc).
- **TBD:** bulk reprocessing in general using improved calibrations and methodologies.
- Brainstorming for ZTF Phase II.

ZTF Phase II thoughts

- Extend / improve data-retrieval and analysis tools for community (in context of MSIP deliverables).
- Inevitably, will also be of value to the partnership.
- Store contents of *avro* packets into a database to facilitate easier access / faster querying (not a broker!)
 - ➢ include info. from other databases (e.g., NED − NASA/IPAC Extragalactic Database).
 - > extend photometric histories.
- Adopt a more efficient and adaptable datastore for distributing lightcurve data instead of matchfiles.
 - can be used directly with parallel processing frameworks that also leverage GPUs (large queries).
 - ➤ also optimized for cloud computing.
- Integration of archive with science-user workspaces and analysis platforms (LSST-like model).
 - custom co-addition & mosaicking, integrated with forced photometry.
- More frequent public data releases.
- Your thoughts?

Back up slides

Reminder on documentation

- **ZSDS Explanatory Supplement** (linked from ZTF public website under): *https://www.ztf.caltech.edu/page/technical#science-data-system*
- Science Data System paper: https://iopscience.iop.org/article/10.1088/1538-3873/aae8ac
- Archive access and services: https://irsa.ipac.caltech.edu/Missions/ztf.html
- **Public alert archive and usage:** https://ztf.uw.edu/alerts/public/
- First Public Data release: https://www.ztf.caltech.edu/page/dr1

Baseline deliverables / data access portals

- 1. Instrumentally calibrated, epochal image products, bit-masks, source catalogs, PSFs, and difference images Archive (IRSA)
- 2. Raw image data and image calibration products used in pipelines Archive (IRSA)
- 3. Reference images (co-adds) from combining (1): coverage maps, uncertainty maps, and source catalogs Archive (IRSA)
- 4. Alert (point-source event) stream from real-time image-differencing pipeline: packetized with metadata Marshal(s); Public Brokers; Archived in IRSA
- 5. Products to support real-time Solar System / NEO discovery and characterization: both streaks and tracks ZTF-Depot (internal) and IAU-Minor Planet Center
- 6. Lightcurves & metrics from matching sources across individual epochs using (1) to beginning of survey Archive (IRSA); ZTF-Depot (raw matchfiles)
- 7. Quality assurance metrics, summary statistics, and survey coverage maps: for performance monitoring ZTF-Depot (internal)
- 8. Documentation: cautionary notes, recipes, and tutorials on data-retrieval and analysis Explanatory Supplement on ZTF Public Website; PASP paper published in Dec 2018

Pipeline summary: timeline view

Data volumes & Statistics Mar 17, 2018 (survey start) – Mar 6, 2019

Exposure/Image Metric	g	r	i
Raw on-sky exposures	67,781	103,366	5,510
Survey-ready quadrant- based reference images (#quadrants N≥15 visits)	45,087 (47,934)	53,392 (56,259)	11,127 (13,193)
Lightcurve matchfiles (last made Dec. 15, 2018)	40,822	51,076	11,018
Epochal science image products archived (all CCD quadrants)	~ 10.6 Million (788.6 TB)		

Source Extraction Metric	Number
Epochal science image PSF-fit extractions	183 B
Epochal science image aperture-based extractions	113 B
Reference image PSF-fit extractions ("seeds" for lightcurves)	4.5 B
Reference image aperture-based extractions	1.5 B

Event Extraction Metric	Number
Raw candidate events from all difference images (+ and – diffs)	+ 274 M - 136 M
Alert packets generated from all difference images (+ and – diffs)	+ 58 M - 29 M
Alert packets associated with known solar system objects (≤ 3 arcsec)	2.6 M
Streaked detections from new SSOs	30
Streaked detections from known SSOs	> 12 K
Moving object tracklets not associated with known SSOs & delivered to MPC	~ 5 K
Moving object tracklets associated with known SSOs & delivered to the MPC	> 850 K

Corrections to epochal PSF-fit photometry

