ZTF Data System and Deliverables

Frank Masci & the IPAC-Caltech ZTF Team

UW-ZTF joint meeting, April 2017

ZTF Raw Camera Image Data

- One camera exposure: 16 CCDs; each ~ 6k x 6k pixels
- Image data packet transmitted is one CCD (= four readout-quadrant images)
- 16 CCD-based image files are transmitted ~ every 45 sec.
- Full camera exposure: ~ 1.3GB uncompressed

Basic image-unit for pipeline processing from which all products are derived is a \sim 3k x 3k readout quadrant image.

ZTF Field-of-View

- Survey rate is ~ 3760 deg² / hour Faster than the sky rotates!
- Depth: $R \sim 20.4 \text{ mag AB} (5\sigma)$

Overview of the ZTF Data System

ZTF Pipelines

Overall, there are 10 inter-dependent pipelines:

Raw data ingestion/processing:

- 1. Raw data ingest, archival of raw images and storage of metadata in database [*realtime*]
- 2. Raw-image decompression, splitting into readout-quadrant images, floating bias correction, simple QA [*realtime*]

Calibration generation:

- 3. Bias-image derivation from stacking calibration images acquired in afternoon [made before on-sky operations]
- 4. High-v flat (pixel-to-pixel responsivity) from stacking calibration images [*made before on-sky operations*]
- 5. Low-v flat from either long-term ZPVM or dithered-star observations [every week, month or longer?]

Real-time:

- 6. Instrumental calibration of readout-quadrant images: astrometry and photmetric cal [realtime]
- 7. Image subtraction and transient discovery (point sources / streaks), metadata and cutouts [realtime]

Ensemble-based processing:

- 8. Reference-image generation (co-addition of epochal images from 6) [as needed: when good quality data available]
- 9. Source-matching with relative photometric refinement for lightcurves; inputs from 6 [every two weeks or longer?]
- 10. Moving object pipeline system (MOPS): tracklets from linking transients from 7 [every 3 or 4 hours during night]

Deliverables and Products

- 1. Instrumentally calibrated, <u>readout-quadrant based</u> epochal image products:
 - images with photometric zero-points derived from STF-fit photometry
 - bit-mask images
 - two source catalogs per image: PSF-fitting and aperture photometry
 - difference images with QA metadata
- 2. Reference images (co-adds), coverage, uncert maps, two source catalogs per image: PSF-fitting and aperture
- 3. Match-files per readout-quadrant from source-matching of epochal extractions:
 - based on epochal PSF-fit photometry catalogs: to support "object-based" lightcurve database:
- 4. **Products to support near real-time discovery:** *thresholded* transient candidates (point sources and streaks) with metadata and image cutouts: pushed to "ZTF-Depot"
- 5. To commence following survey start: alert (event) stream extracted from real-time pipeline with metadata
- 6. Historical (users) database of all transient candidates and metadata generated from real-time pipeline
- 7. Products to support Solar System/NEO discovery and characterization:

- moving object tracks from linking point-source transients; known objects are tagged: delivered to MPC.

ZTF Archive and Depot

- **ZTF-Depot:** to support "fast response science": plan is to deliver a generic event stream (following automated vetting or light filtering in pipeline) to a webserver for collection by collaboration.
- **ZTF-Archive:** all products, including all extracted events from survey can be retrieved from archive

ZTF Transients/Events Database

Subtractions		1 1*			Candidates	
pid scigai scisat rfid scibck rcid scisig nid sciinp expid refsat	n gnd bix seeing and	1 1 Streaks	2 1 ImMeta pid obsdate	candid pid isdiffpo tblid nid	shar sky mago fwhm class mind	pnr diff tar ltoedge
ppid reform field refsign ccdid refinp qid diffsig filter diffnb filpos diffnb fid diffpct jd diffnd ra0 diffnw dec0 diffavy ra1 diffavy fa2 infobii	gind pix seeing pix adpixaft adpixaft bad glim nm ssqbef gsqaft gsqchg sssci	strid fid nid field rcid fsnum npixels xsize ysize maxx maxy maxy	nightdate programp programic exptime focuspos outtemp seeing sunaz sunalt moonra moondec moonillf	i field field ypos ra dec magpsf sigmaps chipsf magap sigmaga distnr magnr	f nneg p sera aima bima aima bima elong nbad rb p sumr ssdis ssma	romim ge gerat gerat gerat garat grat
dec2 pdiffb ra3 pdiffb ra4 ncand dec4 ncand scimaglim ncand refmaglim ncand zpmaginpsci zpdiff diffav zpraf ndiffir fluxrat status create	ckgnd ckgnd scimrefraw refmsciraw scimreffilt refmscifilt nnoisepix ychisqaft nfilename nfilename	nwidth length median scale a b asigma chi2 rho xstart ystart xend vend	moonsb moonalt airmass objrad objdecd filename created	1 0		andMatches candid nid rcid strid
1 1		flux fluxerr mag magerr startra	luid name ra dec a			cvsid qsoid- luid l cid
Refims rfid nframes totexptime field jdstart fid jdend rcid status ppid filename ra created dec		startdec endra enddec midra middec angle exptime midjd speed distrefnear magrefnear rb	b2arat pa dm dmkin btc objtype m21 source		Stars strid strcat ra dec mag score	

ZTF Depot file system

Back up slides

Architecture Details

Data & processing flow

ZTF Public Delivery Schedule (provisional)

- First data release: survey start + 12 months: ~ Dec 2018
- Second data release: survey start + 18 months: ~ Jun 2019
- Third data release: survey start + 24 months: ~ Dec 2019
- Fourth data release: survey start + 30 months: ~ Jun 2020
- Fifth data release: survey start + 36 months: ~ Dec 2020
- Survey start: ~ late 2017

• Core deliverables for the above:

- epochal science images + catalogs + ancillary products (metadata)
- co-add images + catalogs + ancillary products (metadata)
- above products searchable through user-inteface according to spatial constraints/survey parameters
- lightcurve access through user-interface (refined source-matching from epochal PSF-fit catalogs)

ZTF data product volumes / source counts

Per night:

Assuming average length of night at Palomar is ~ 8h:40m (summer: ~6h:20m, winter: ~ 11h), we expect ~ 700 camera exposures per night on average => 44,800 readout quadrant images.

- raw data (including calibrations): ~ 367 GB <u>compressed (3x)</u>
- instrumentally-calibrated epochal images, masks, and metadata: ~ 3.1 TB
- aperture photometry (epochal) catalogs: ~ 140 GB
 - > ~ 310 million sources per night
- PSF-fit photometry (epochal) catalogs: ~ 44.8 GB
 - \geq ~ 900 million sources per night
- image-subtractions and metadata $\sim 1 \text{ TB}$

Total per night: ~ 5.65 TB

For three-year survey:

Assuming ~ 250 to 280 "good" nights per year (from PTF), Total image/catalog file products: ~ 3 PB

Density of PSF-fit extractions from PTF CCDs

Benefit of Machine Learning

- Use the *RealBogus* (RB) quality score from a machine-learned classifier: crucial for PTF (down to 4σ).
- If avoid everything with a RB score < 0.1, only need to store ~ 6 million candidates per night in DB for ZTF.
- If use RB > 0.73 (< 1% false-positive rate) found for PTFIDE subtractions, need to scan <~ 400,000 cands/night.
- Translates to $<\sim 10$ candidates per ZTF quadrant image or $<\sim 14$ candidates/deg² on average (<u>all transients</u>).

Cumulative fraction of transient candidates versus RB score from ~22,000 PTFIDE subtractions (Masci et al. 2016).

Expected number of transients/cutouts for ZTF

- Assume (following internal real-bogus filtering) ~ 20 point-source candidates per readout-channel image.
- With ~ 700 exposures / night resulting in 44,800 positive subtraction images, this leads to ~ 1 million *target* point-source candidates / night.
- These exposures (and candidates) are ~ equally apportioned across multiple filters and two epochs (coverages) / night. This point is not relevant to the overall sizing estimate.
- For each *target* point-source candidate, there will be three image cutouts (*sci, ref, and sci-minus-ref*), yielding ~ 3 million *target* candidate image cutouts / night.
- We also expect ~ 200,000 *streak*-candidates / night, from which only *sci-minus-ref* image cutouts will be generated.
- From the last two bullets, that's ~ 3.2 million image-cutouts per night (or ~ 5,300 cutouts / minute) for target candidates only.
- At the time of writing, each JPG cutout is ~ 1.3kB in size. This amounts to ~ 4.2 GB in cutouts alone per night (or ~ 7 Mbytes / minute) for target candidates only.
- Assuming Ndhist = 3 days when generating *forced* historical image cutouts on each *point-source target* candidate only, the above numbers are multiplied by three, to yield potentially ~ 9 million cutouts per night (or ~ 15,000 / minute).